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ABSTRACT

This report summarizes the results of a study on nonlinear phenomena

in plasmas with the main emphasis on develoning deterministic theories for

plasma turbulence based on the Ruelle-Takens theory of strange attractors

and on the interaction of solitons. The main results include a demonstra-

tion of the occurrence of turbulence-like solutions in a simplified Zakharov

model for Langimir turbulence and a number of nonlinear three-wave inter-

actions. The stability of mode-converted lower-hybrid solitons is also

studied.



I. INTRODUCTION

Recently, a considerable amount of work has been performed on plasma

turbulence. This was partially motivated by the observance of various forms

of turbulence phenomena in plasma heating experiments conducted both in this

country and abroad.

Since plasma turbulence is primarily due to the nonlinear excitation

of collective oscillations having a broad spectrum of frequencies, nonlinear

plasma models must be used in the development of theories for such phenomena.

The classical approach to the theory of plasma turbulence is to regard the

phenomena as stochastic processes. Thus, the description of turbulence

quantities is given in terms of their statistical averages [I],[2]. In

existing theories for plasma turbulence, certain basic assumptions are in-

troduced, such as ergodicity or stationarity of the processes. The validity

of these assumptions is extremely difficult, if not imossible, to establish

by experiments. Furthermore, various phenomena at the onset of turbulence

cannot be explained by statistical theories.

Motivated by such deficiences in the statistical theories of turbu-

lence, attempts have been made to develop turbulence theory using determin-

istic models. In 1973, Kingsep, Rudakov and Sudan [3] suggested that strong

Langmuir turbulence could be described in terms of a system of interacting

Langmuir solitary waves. Subsequently, a considerable amount of analytical

and numerical work has been done based on this idea for the one-dimensional

case [4],(5]. It was suggested that a similar theory could be developed for

the multi-dimensional case. Goldman and Nicholson, however, showed that

multi-dimensional spherically symmetric Langmuir solitons, under adiabatic

conditions and negligible ion inertia effects, are unstable [6]. Similar

woo - ,L- : .
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conclusions have been deduced for other cases [7]-[11]. Therefore, further

studies are necessary before definite conclusions can be drawn from the

approach suggested by Kingsep et al.

In early 1978, under the support of AFOSR Grant No. 74-2662, we began

to explore a new direction for developing a deterministic theory for plasma

turbulence. This approach was motivated by the work of Lorenz on determin-

istic nonperiodic flows pertaining to atmospheric turbulence (1] and the

theory of "strange attractors" proposed by Ruelle and Takens (13]. A remark-

able feature of Lorenz's work is his demonstration of the existence of

turbulence-like solutions of a simple nonlinear third-order ordinary differ-

ential equation with quadratic nonlinear terms. His equation is a highly

simplified model of an incompressible fluid with heat transfer. The results

suggest the possibility of modeling atmospheric turbulence by deterministic

nonlinear differential equations.

The main objective of this study is to develop deterministic theories

for plasma turbulence from the standpoint of the Ruelle and Takens theory

of strange attractors and the interaction of solitary waves. The results

of this study will be summarized categorically in the subsequent section.
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II. RESEARCH SUMMRY

In the study of plasma turbulence via the Ruelle-Takens approach,

attention has been focused on Langmuir turbulence and nonlinear wave-wave

interactions in plasmas. The study of plasma turbulence via the interaction

of solitary waves has been limited to mode-converted lower-hybrid solitons.

The results are summarized below.

A. Nonperiodic Oscillations of Langmuir Waves

In 1978, under the support of AFOSR Grant No. 74-2662, we discovered

that single-mode equations, derived from Zakharov's model for Langmuir turbu-

lence in a plasma in the presence of an external spatially homogeneous

electric field oscillating at the electron plasma frequency, have non-

periodic chaotic solutions whose power spectra have turbulence-like features

[14]. In this simplified model, phenomenological damping terms are intro-

duced; such dissipative terms are essential for the existence of chaotic

oscillations.

During the period covered by this report, we explored further the

observed chaotic oscillations with the objective of achieving some under-

standing of the nature of the onset of these oscillations and their quali-

tative behavior. Our first results consist of estimates for the amplitudes

of the chaotic oscillations. We showed that the magnitude of the high-

frequency electric field oscillations, about some real scalar multiple of

the external electric field Eo, satisfies a bound which grows linearly with

lIE 0 II . In addition, the ion density oscillations are contained in a ball

whose radius grows with IJEo112 . These bounds are consistent with the

numerical solutions. The results were combined with those in [14] and

published recently in the Journal of Mathematical Physics (see Appendix A).

.. . ._ _ _ __" -_.. ._ .. .. . . . . ...
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In order to understand the onset of chaotic oscillations, we determined

numerically the Poincar6 mappings associated with various hyperplanes in

the system's state space. It was found that the mappings are quasi-one-

dimensional, but their structures are not sufficiently simple to permit mean-

ingful analytical studies. Finally, a bifurcation analysis of the system was

performed with respect to the damping coefficients. The results are described

in the report [P9] (see Appendix B).

B. Chaotic Solutions of Resonant Three-Wave Interactions

This study began with the following well-known simplified model gov-

erning the nonlinear resonant interaction of three waves with both linear

growth and damping terms:

dAj/dt = yA, - iVA2A2

dA2/dt = - Y2A2 - iVAIA 3* (1)

dA3/dt = - y3A3 - iVAIA2 *

where the Aj 's correspond to the normalized complex wave amplitudes, V

is a real coupling coefficient and the yj's are positive numbers. This

model includes a number of important resonant wave-wave interactions in

plasmas. It was shown that, under certain conditions, the asymptotic

behavior of the solutions of (1) for t-- can be described by a system

of three real ordinary differential equations. Numerical studies showed

that the reduced system exhibits chaotic oscillations which are sensitive

to variations in the initial conditions. Moreover, the autocovariance func-

tions associated with the chaotic solutions appear to decay as the separa-

tion time tends to =. This suggests that a turbulent state could be
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produced through the nonlinear interaction of a linearly unstable wave with

two linearly damped waves. The preliminary results of this study are de-

scribed in the report [P7] (see Appendix C) published in November, 1979.

Since then, further studies have been made in categorizing general three-

wave interactions which are capable of producing chaotic oscillations. The

results will be described in a forthcoming thesis by K. Masui [P8].

C. Mode-Converted Lower-Hybrid Solitons

It is well known that one-dimensional Langmuir solitons are nmdula-

tionally unstable to transverse perturbations. The instability causes the

solitons to collapse and form bunches resembling a turbulent state. Here,

it was shown that the planar mode-converted lower-hybrid solitons are also

unstable to transverse perturbations. Moreover, two distinct classes of

modes are found. In the lowest order. the stability of each class is re-

lated to a particular term of the equation governing the nonlinear evolution

of these waves. The details are described in the report (PSI] (see Appen-

dix D).

D. Chaotic OsciZlations in BiZinear Systems

It was observed that the mathematical models of may physical procesqes,

including certain nonlinear wave-wave interactions and the Lorenz equation,

can be written in the form: dx/dt = Ax + f(x) , where A is a real nxn

matrix and f is a bilinear function of x . During 1979, chaotic oscilla-

tions in this class of systems were explored from the viewpoint of feedback

control theory. A simple and sufficient condition for the nonexistence of

such oscillations was derived. Ellipsoidal bounds for the amplitudes of

chaotic oscillations were also obtained. The results are applicable to the

Lorenz equation and other equations which are known to have chaotic oscilla-

tions. The details are given in report [P6] (see Appendix E).
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III. CONCLUDING REMARKS

Since the initiation of this study, there appears to be a growing

interest in the theory of chaotic oscillations in deterministic nonlinear

dynamical systems and its application to turbulence, as proposed by Ruelle

and Takens. During the period covered by this report, the following confer-

ences and symposia were held both in the US and abroad at which papers on

chaotic oscillations were presented:

(1) International Workshop on Intrinsic Stochasticity in Plasmas,

June 17-23, 1973, Institut d'Etudes Scientifiques de Cargese,

Corse, France.

(2) Annual Meeting of the Plasma Physics Division, American Physical

Society, November 12-16, 1979, Boston.

(3) Engineering Foundation Converence on New Approaches to Nonlinear

Problems in Dynamics, December 9-14, 1979, Asilomar, California.

(4) International Conference on Nonlinear Dynamics, December 17-21,

1979, New York City.

So far, chaotic oscillations in nonlinear systems have been discovered

mostly through bifurcation analysis and numerical experimentation. There

are no general mathematical conditions of ensuring the existence of chaotic

oscillations in systems described by ordinary or partial differential equa-

tions. Moreover, it is very difficult to verify that a numerically computed

apparently chaotic solution is indeed chaotic in some sense. Until these

basic questions are resolved, there remains a gap between the mathematical

theory of chaotic oscillations and turbulence phenomena as observed in the

physical world.

I'
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Nonperiodic oscillations of Langmuir waves
P. K. C. Wang
School of Engineenng and Applied Science. University of California. Los Angeles. California 90024

(Received 21 December 1978; accepted for publication 15 October 1979)

It is shown that the single-mode equations derived from Zakharov's model for Langmuir
turbulence in a plasma in the presence of an external spatially homogeneous electric field
oscillating at the electron plasma frequency has nonperiodic chaotic solutions whose power
spectra have turbulence-like features. Bounds for these chaotic solutions are derived. Typical
numerical results are presented for the one-dimensional case.

1. INTRODUCTION 2. SIMPUFIED MODEL

It has been observed that certain nonlinear ordinary Let the spatial domain 2 be a bounded open subset of
differential equations have chaotic or turbulence-like solu- the N-dimensional Euclidean space R' , and L (f2 ) denote

tions. ' - A simple example is the Lorenz model for thermal the Hilbert space of real square-integrable functions defined

convection in a fluid layer.' Recently, Ruelle and Takens on 12 with inner product (u,v) = f , u(x)v(x) d12. Let {0 }
proposed that fluid turbulence can be mathematically char- be a countable orthonormal basis for L '(D ). We seek solu-

acterized by this class of solutions whose trajectories in the tions to (1) and (2) in the form:
state space are attracted to a nonempty set ("strange attrac-
tor") which is neither an equilibrium set nor a periodic or- E(t,x) = Ek (t)& (x), n(tx)- ; Xn(t)4k (x). (4)

bit.' On this set, the trajectories exhibit chaotic oscillations.
Moreover, they are sensitive to variations in the initial condi- If the boundary of 1 is sufficiently smooth, then the
tions. Here, we shall demonstrate that the single-mode equa- Laplacian with suitable homogeneous boundary conditions

tions derived from the Zakharov's model for Langmuir tur- is a negative operator with a countable point spectrum. We

bulence in a plasma have nonperiodic chaotic solutions. may take 6 to be the orthonormalized eigenfunction of

We begin with the following dimensionless form of corresponding to the eigenvalue A, = -- / , . In this case,

Zakharov's equations describing the nonlinear interaction of we may substitute (4) into (1) and (2), multiply both sides of

high-frequency electron oscillations with an ion fluid in the the equations by .6_ (x) , and integrate over 12 to give a coun-

presence of an external spatially homogeneous electric field tably infinite system of ordinary differential equations for

oscillating at the electron plasma frequency a, :' E. and n,:

,7 [i +V2E- n(E+Eo)] 0, ( d E n,,E, + akk.nE, (5)

Y~n __ (2)n d n,,,+5- - 7 n = 172[ IElIZ + Eo .(E + E*)], (2) d'n , n,
dt 2

where i - V - 1; (.)* denotes complex conjugation, and a.b
theusualscalarproductoftworealorcomplex vectors a and -J u,.(E,. + E,) + -f.EkEk', (6)
b. E = (E .... ,4) is the complex amplitude of the high-
frequency electric field i' given by where E.Ek. = XE.sE:., and

'(t, x) = Re E(t,x) exp( - ka Pt)]; (3) a,,k' = Ok ()O X.W(X) dO. (7)

and n is a real quantity corresponding to the low-frequency
perturbation in the ion density from its constant equilibrium f
value no . The units of time t, spatial coordinates x = (x,, fl.kk' J 7 [ k (x)o,,. (x) ]. (x) dfl (8)

S..,xv), electric fields E, and E, and ion density perturbation By retaining only the terms involving E,. and n, in (5)
are respectively, 3/(2aw), (3/2)a -, , AD , [(64/3)irno m. and (6), we obtain the following simplified equations for a

c 11/2, and (4/3)ane , where a is the electron-ion mass ratio single mode m:
tAm,, AD the Debye length, and c, is the ion acoustic d E,
speed.Here, =(E 0o ... ,Eo) is a real constant vectorcor- -- i,, =n,(E" +aE,), (9)
responding to the normalized amplitude of the external elec- dit

tric field. It is of interest to determine the behavior of the d n. dn I
solutions of (1) and (2) (with appropriate damping terms) as dt" 7- - ' "" dit.Lfn
a function of the parameter E , in particular, the existence
of turbulence-like solutions for some E, and the onset of - - E" .(E, + E,) + B )E. P (10)
such solutions as Eo tends to some threshold values, where

396 J. Mthi. P ys. 21(2). February 1960 0022.24888/020396-10S1.00 3 1980 Amencan Institute of PlWslcs 39%
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a- f a Wd. , f {v2[& _2(x)I6,(x) dfl. terms of~1
(11) R ff ,¢-- or Iy'lFOII',)

X [y + (2a + fly - 2)11lk III,, I '(0
Also, we have added the phenomenological damping coeffi- + - l (20)

cients y,_ and F, .They may represent Landau damping of Finally, using (20) to eliminate SR in (18) leads to the follow-

the high- and low-frequency waves. In what follows, we shall mg quadratic equation for :

analyze the behavior of the solutions of (9) and (10) as E, A" 2 + B , + C = 0, (21)
varies. For brevity, the subscript m in (9) and (10) will be where
omitted in places where ambiguity does not arise.

A starting point for searching the strange attractor or A =( /y)2 + 62 ] i14 I', (22)

chaotic solutions is to study the nature of the equilibrium B = 2(' y - ' + ry)II, [I' - 2jus2 r- 1114 l'. (23)
points as F varies. It is known that chaotic solutions could
arise after finite number of Hopf bifurcations,' therefore we
shall establish the existence of Hopf bifurcation points. 6 = (2a + ). - 2). (25)

IfB 2 _-AC>Oor
3. EQUIUBRIUM POINTfS

Consider the following equations for determining the II 1 4a 8 lIE 0 12 _ (2ar/) 2>0, (26)

equilibrium points of (9) and (10) for any given Eo: then (21) has real roots given explicitly by

(ir-,u)E=n(EO +aE), (12) 45/ = 8 2  {IIo 112 ( 20+ 28 )
2(

2 +s-'2 2 1E112  141 62
/2n =- --/A2FoE + E*) + 6 IE•2. (13) (,6 - 41 t)IIFO 1 2

]'/
2

1 (27)

Using (13) to eliminate n in (12), we obtain an equation ±5
for E:I
fr -E: +For IEO 112>0, condition (26) is satisfied if and only if(ir-uz2)E = [-E ~E+ E)+ 4u -  IEIi(EO +aE).

(14) I14112 >E2_2a,5-I[ + (, + 6Zr?)"/2. (28)

Evidently, since FO is a real N-dimensional vector and n Thus, we conclude that for 0< lioE 11 < E , the origin

is real, asolution of(14) must be a complex scalar multiple of (E,n,n) = (0 +)0,0,0) is the only equilibrium state of system

F, (i.e., E = E& for some" = 'R + i T,). Thus, the solution (9) and (10), wherei denotes dn/dt. When IEO11 = E , a

of (14) reduces to finding . Note that E = 0 is a solution of new equilibrium state (E,n,n) = (Re(E) + tim(E),n,0)

(14) for any E . Substituting E = E " into (14) leads to the emerges, where Re(E) = g'EF, Im(E) = a E, with , given

following equations for g' and g,: by

- ("a + r e) 67, I -u (E. - 2
2 +7 2 8 ), (29)2( 2+ 2 + .57,2) 2 -1 6 2

A B-( I D + }( +a ,)IIE 112,  (15)
%= 1M- 2q 12 and t'R,n are given by (20) and (17) respectively. As tlFIt

~R -/, {fi=~ {B/2 + )-~R 1 Ii f1 6II,  increases from E , the foregoing nonzero equilibrium state
(16) bifurcates into two distinct equilibrium states ( A' EO

and +/ 4E. ,nF + ,0) and EO + "E- ,n -,0) where
n = 2{P-(J€2 + 2)- 11}tI2, (17) are given by (27), whose corresponding '1 andn t are de-

where tIE,311 E fi . termined respectively by (20) and (17). We note that , and

Dividing (15) by (16) gives , depend on lIEO 12. Also, the coefficient C defined by (24)
vanishes when

# + # = (a ,)- ' , r7, (18) IF l2 = 2 w4 + 7)(7 .o

which implies that a solution must lie on the circle: Co 1 a si e
2Consequently, Falso vanishes. Thus, in this case, the equ-

(t -. )2( +A) = A)  (19) librium setconsis of the origin and the point [(+(t" + +2L Y ' +- (ar)2 + i ,-I)ED ,n+,0] .When 114 11 incrae fromE . ,we

Now, we substitute (18) into (16) and solve for L" in j have again three distinct equilibrium points.

4. STABILITY OF EQUIUBRIUM

Let E. - Re(E), E, - Im(E), and z denote the 2(N + I)-dimensional real vector tnAi,E ,tE.)- where (_)r denotes
transpostion. We rewrite (9) and (10) in the form:

n1
-AdA /2n - 2/"n - 22 EO .E, + f (lIER III + IIEI 2)

dt = f [A -rEt +(,U2 + an)E,

-L - yE, - (U2 + an)Et - n4(

391 J. Math. Phiys.. Vol. 21, No.2, Febray 1960 P.K.C. Wang 399
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Let z, = (n',O,E ) bean equilibrium point of ( 3 1)as given in Sec. 3, and 6zQ )z(t) - z, We consider the following
linearized system of(3 I) about z,:

d_ = J,,-(zo;FO)6z (32)
dt

where J1 (z, ;FO) is the Jacobian matrix of f at z, given by

0 1o o 1
_(&2 - 2/ 2(flEe -,;,E)r 2l(E7,Ir

aFE 0 - YIN . (u- + an)I (33)

-(E 0 + a,) 0 - (i&' + an.)I, - yIN
where ON and 1N are the N-dimensional zero vector and N x N identity matrix respectively. It can be shown (see Appendix)
that the characteristic polynomial of J, (z, ;EO) is given by
det (J (z,;O) -A Iz, ) 1

- [(y + A )2 + (z + an)Z I'(A 2 +21A + IA') +2 f(y + A) 2 + .u + an*)']

X [(Iu + an')(( 0 E' -Iz'O).(E + Ej) + a 0 11E! II2} + (y + t Xal +,-)EO .E . (34)
For the case where z, =0, the above expression reduces to

det [J. (0,F) -A 1, .- ,) ] = [(r + A )2 +/,]4-N [(A ' +2.FA + )f){(r + A )' +,u'l -2 A'1,FOI 2 ]  (35)
Evidently, when E, =0. the spectrum of Jf(0;0) is given by( - y ± iu' (multiplicity N), - r± (F' _/ )"/)],which
implies the asymptotic stability of the origin for yfX>0. ForE0 #0, the eigenvalues A = - y ± iul [multiplicity (N -1)]
remain invariant, while the remaining eigenvalues are roots of the quartic equation:
A' +2(y + r) t I+( + A

2 +4rF + 7-)A 2+2 [r (A +,q') + r/zp]A +p2'[( 2 +/I') -2 /2'1O i2] = 0. (36)
Obviously, Jf (0,&) has a zero eigenvalue when IO 1-' = EC & (114 + )/(.2A). This coincides with condition (30) for
which one of the equilibrium points returns to the origin. It can be readily shown by using Routh's criterion9 that the origin
becomes unstable when [E,& 11 > i, . In fact, (36) has only one unstable root and it is real and positive. Thus, the origin has a
saddle point structure in a two-dimensional manifold. So we conclude that Hopfbifrcation cannot occur at the origin for any
value of E II.

For the case where >E0 IIE,. , there exist nonzero equilibrium states z. which depend on lI, F . We observe from (34)
that A = - y ± i($&2 + an') are stable eigenvalues of Jf (z,;FO) with a multiplicity of(N -1). Trie remaining eigenvalues are
given by the roots of the quartic equation:
' + a3A I + a2 (IIO1)A z + a, (IIE.1)A + an(E0 11) = 0. (37)

where

a3 = 2(y + f), a2 (11E 0 11) = y + A2 +4rF + (l + an")',
a, (lI4 II) = 2{f [7 + ("I + ano)'] + r1(2 + (a,"2 + 6)F- ,E}, (38)
ao(IEo E11) = '[r' + Wp + an)h ] + 2(p" + an') [(f El -/A2Eo) PE + aE.)

+ a II, I'I + AaA' + l)E o.E},
where Ex , , ,and n (given in Sec. 3) depend on liE, 11. To determine the value of EIO 11 for which Hopf bifurcation occurs, it
is necessary to determine the existence of purely imaginary roots of (37) for some value of 1io . From Routh's criterion, we
can deduce that if

aa. (lIE 1I) > a, (lIEo 11) (39)
and

a, (IEo 11)[aa 2( (IF 11) - a, (JEo II)] = aa, (1& 11), (40)
then (38) has a pair of purely imaginary roots given by A = ± {a~ao [a~a2(IIEo II)- a, (IEo II)1)t/2i.

Let Eo, be the value of lIEO II such that both (39) and (40) are satisfied- and A : (lIE 0 11) - ARI(Eo II) ± iAr(lI 11) be the
roots of(37) such thatA, (Eon) = 0. By a lengthy but straightforward computation, it can be shown that A a ,the derivative of
X, with respect to the parameter fE0 11, is given by
X' (11EO 11) = [a a(BflO 1) +2 a, (II& BI)a, (BG 11) - aa' (BIEo 11a, (IEO B1)

-a 3a2(IFI)a, (lIFGl)](2a3 [aa, (lE B) + a (IIEOIj) -4ao (IIFO 11)]j-', (41)
where a', denotes the derivative of a, with respect to lIE, 11 For Hopf bifurcation,' 0 ,(EoM) > 0. Due to the complicated
dependence of a2 ,at, and a0 on lIEo 1 , it is difficult to determine the threshold values of 11E0 11 for Hopf bifurcation. We shall
resort to numerical computation at this point.
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FIG. L l.o-u of equilibnum electric field E - E' , +X withbE asa
parameter. (E. =: - F andE, F, oarednoted by solid dots and
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We note here that the Hopf bifurcation problem for (9) FIG 3. Loc of the einvlues of J (0,,) wazh E a a parameter.
and (I0) with spatial dimension N or dim(E) > I can be com-
pletely studied by considering only (37) which is the charac-
teristic equation for the case with N = 1. Since for y > 0 and V(E) = IE - fE12 /2, (42)
r > 0. the additional eigenvalues A = - ,A ±- i(u2 + an") for :o estimate the magnitude of chaotic oscillations of the elec-
N> I are stable, and a2 0 3 (11E0 11) > 0 for all IE0 II. the di- tric field where ma -- ReE + icmo is to be determined. By

mension of the unstable manifold associated with a nonzero direct computation:

equilibrium state is at most three.

dV= - AIE, + (J) ry-' u' + an)ImE - RA]II2
5. BOUNDS FOR CHAOTIC OSCILLATIONS t

The existence of chaotic oscillations depends on the + lIE, + (j) [- -jt 2 + an)ReE - ImE + y -'nE 112
manner in which the stable and unstable manifolds associat- - [ IIr' (a12 + an)Im] - Refl~ -

ed with the equilibrium points intersect with each other. At
present, there are no readily verifiable analytical sufficient + A' + an)ReE - liE + r-'n& (43)
conditions for the existence of chaotic solutions for finite If we set ReE f - a -'Eo and ImlE = 0, then (43) reduces
dimensional systems of ordinary differential equations. to
Here, we assume the existence of chaotic oscillations and dV
proceed to derive bounds for their amplitudes, thus provid- 7 = _ Y{IIER + (2a) -' E, II + lIE,s E/(,)lI2
ing estimates for the size of the invariant manifold generated dt

by the chaotic oscillations.
First, we shall make use of a function Vof the form:

RIO

. .
,, / - - -, __'-01

is- ___ 12 ,1 - 1

FIG. 2. Locus of equilibrium ion demntiti n* and n - with E u a

parameter. FIG. 4. Locus of the eienvalues ofJ, (z,* F:,) with Eo' as a parameter.
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_(a)-2(j +Mr-2)l~oil2} -9.0 -6.:o -3.00 0'.00 3. JO .3

- - r[ I E - E I - (2a) -(l + 4 r-2 )lE0111], (44)
where E, = - (2a) -I E, + i14sF,/(2ay). We note that FIG. 7. Projection of'the trajectory of(53) and (54) (with parameters as
with the foregoing choice of f., n does not appear in (44). given in Fig. 6) onto the (E, ,E,).plane.
Moreover, for y > O, dV/dt < 0 at any point E exterior to the
set Z = {E: I E - E, I (2a) -'(1 +'y -1 ) '/ 2 jl Il}. Let tains all the points E ) along any chaotic solution of (31)

I -E: V(E) = 1E + a-'E2b 'I. Since for any5>0, when it exists.
i- aNext, we derive a bound for the magnitude of ion densi--- is a ball in E -space centered abo ut the po int - a ty os il t o s Ef Ao6 - J 1 .W a e rt

with radius V26, it is possible to select a 6 such that = 6C . ty oscillations. Let i -n (+" 3. - IIE3 2. We can rewrite
In fact, elementary geometric considerations show that the the first two equations in (31) as
smallest 6 having the foregoing inclusion property is given + [0,6 IE _

2f6 -1 E 2], (45)
by = (V2a) -I (1 +/'y - ),11211 E 11 .Evidently, dt (5
dV/dt <Oat any point E exterior to--j. This implies that for where X- (i,-) r and
a solution of (31) initiated from any point I [ 1 1
z(O) = (n(O),h(O),ER (0),E, (0)) at I = 0 with E(O) = E, (0) . 2 _ 2 (46)
+ X, (0) exterior to-s I its corresponding EQ ), t > 0 either - 1A 2"

eventually enters --6 at some finite time t, > 0 and remains in Given .. r(O), the initial data for .. at t = 0, (45) is equiv-
-- for all t > t, or tends to Z as t oc. Clearly, --% con- alent to the integral equation:

_ _ _ __ .expda I- Kr(O)+ fexp[d(t -r)]
x [0,,6 1 -) -_ / -' ] -  (47)

: !, !, ,', } I 'L I, ! 1,[ 1r'( )11< 11e xp d t JJ[,V'(o)JJ + J 0 1liexpW(t- r)JI

X I Tu," _,(

- --- For IA> r > o, we can find a constant 1W > 0 such that
I1exp (d W) < exp( - rt ). Also, we have already estab-
lished that along any chaotic solution E(t )C-- or I E(t)
+ , +a-'Eo = (Va) ( +,s r-r)"IE II for all t.
Hence,

- '~ E(r) _ 1,&2,6 -
=EO') +a-1& -(a- +/ 2

# -')1o-~ <lE (r) + a - ' E , + I " - I# -' & 11EI
-8+ Ja- +,u'g - IIEOlI<P11E,11, (49)

... ..... .. . . -.-: where ' = (V2a)' (1 +uzy-)112 + 1-' +p'/ -' J.
It follows from (48) that

FIG. 6. Et )I and,,(: ) vs time t corresponding to the solution of(53) and
(S4)withm= I.L rlv i10. r, ?.0. y, , 1.0, E4 I 1.625; initial data: V(t )11 <e {W 1. II Eo11r -' + [l[z(OlI
E(O) - 1.426 - 0.5071i. n(o) - - 40.75 and u(o) - 34.58. - I 6I lIE 11' ]exp( - Ft )}
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. [sin:(mi7x/L)]sin(mIrx/L)dx

,,. " -8mir(2/L ')'"/3 for m odd.

i I Ifor an odd integer m. Eqs. (9) and (10) have the

~~ form:;
2 2 .: C -dE E, E

911[E -  E

=, d ' ,, ="" + (71 /(3,)E. ,(53)

' ' " + 2r , + L]n

C ,' ,' dt 2  dt L=g~2E (E (21L'i '

I -- ~jLo~...+E*)- i8m T 3 IIE.12
- ~~ 3 r (/ )/

2' (54)
00 .00 0. 00 .00 .0..500 .0.00 35.00 cc

T I E 2.C 5.c 0 5

'-I.00 -'10.00 -5 00 0'.00 5'.00 10b.0 ooRE (E)___

FIG. 8. Solution of (53) and (54) with E -2.669,

E(0) - - 3.07656 + 4.22328i. n(O) -. - 8.38056. At(0) .=- 8.25344, and o
other parameters as given in Fig. 6.

<WmXjllZ(O)ll',6 1 1.aIllro I - - , (50) 1

for all t >0Oand E(O)sFss. When jjz(O)ll-r <W1 1 JE 112r "F-,_U_.0

we have I1JX(t )11 < Wl P P Il1-E,112F -' for all t A0, a bound
which is independent of z(0). 8

6. ONE-DIMENSI ONAL EXAMPLE

Consider the case where N -= I with a bounded spatial =
domainfl = [0,4 ]. Assuming that both Eand n vanish at the 0-
boundary points x = 0 and x = L, we can take 46, (x)
= (2/L ) ""sin(klrx/L ),/.u, = k '/L, k = 1.2.... For this o

case, the coefficients a, and 0, defined in (I11) become °

a. f (2/L )"nsm(max/L )dx -. .0 100 RE (E) D0

0 orm ev n FIG. 9. Solution Of (5 3) and (54) with E ,: 5.05, .

=. 51) E(0) -= - 5.0069 +4 3.26742i. n(0) -'8.63114. n(0) - 1.86353, and oth-
• (2'/L)'/2/(3mir) for m odd.' er parameters as given in Fig. 6.
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C ( - ,0). Figure 2 shows the equilibrium ion densities n'
aa function of E'.

S •,Next, we examine the nature of each equilibrium state

zfor various values of E' by determining the roots of (37)
or the eigenvalues of J, (z, ;E). Figure 3 shows the locus of
the eigenvaluei& of J,(0.OE) as E.' varies. As established inhl , f I " Sec. ,whenE, <1' --- 5.05, all the eigenvalues have nep-

b .0 . tive real parts implying that the origin is asymptotically sta-
, M ble. When E'o exceedst I , one of the real eigenvalues

crosses the imaginary axis. Consequently, the origin be-
tl ; ! i i ; {/comesounstable- Figure 4 shows the eigenvalue locus of Jf

.. / j| f VJ/ ' ! /i/ '!\~ (z',;E0o) for 0.1 <E 2<40.0, where the components of 2V
?V 1iJV (n ', 04*. *E.) are given by (17), (20), and (27).

'3 1 We noet o A< 0. 108, all the eignevalues hv
_ negative real parts, and at E =0. 108, a complex conjugate

a pair of eigenvalues cross the imaginary axis into the right-
half plane. It can be verified that Hopf bifurcation takes

0 ME place at this point The locus of the eigenvalues of Jf (z,-;

E0 ) is shown in Fig. 5. Here, for0.1(Ez <2.669, J. (z; ;E,)
_ _ _ _ _ _ _has a positive real eigenvalue. When E ' >2.67, all the eigen-

values of J (z,- ,Eo) are in the left-half plane.
C2 An inspection of the eigenvalue loci given by Figs. 3-5

suggests that one might search for the existence of chaotic
solutions in the neighborhood of z,- for E2 >0.108 (Hopf
bifurcation point). Numerical integration of (53) and (54)
with various initial conditions was performed for progres-
sively larger values of E .The results suggest that the peri-

Codic solutions in the neighborhood of z, (whose existence is
ensured by the Hopf bifurcation theorem) are unstable and

9- the bifurcation is subcriticaL Figure 6 shows the time-do-
main buildup of a nearly periodic solution which evolves into

/ chaotic oscillations. The projection of the trajectory onto the
/. (EtE1)-plane is shown in Fig. 7. Figures 8-10 show the

chaotic solutions for various values of E2. It was found that

9. 12
-1s.00 -10.oo -.00 0'.00 s.00 10.00 12 - "

RE (E

FIG. 10. Solution of(S3) and (54) with E.' - 10.0. E(O) - -6.0 + 2.04
)(O) -(O)0, and othfp parl aiv in Fig. 6. 10 -

where A0 is a real nonnegative parameter. 8 - -.-

To illustrate the qualitative features of the solutions of
the above equations, numerical results are obtained for the
case where m = 1, L = r/v/10, J, = 2.0, and y, = 1.0.
These values are chosen to simplify the numerical computa-
tion. They may not correspond to any particular physical
situation. Numerical results for specific physical situations
will be presented elsewhere.

Fust, we comipte the locus of the equilibrium electric
field E a ftunction ofE Eo using (27) and (20). Figure 1
shows the locus in the (EA ,E,)-phane. It can be seen that
bifurcation occurs at z == E =0.0997 At E =

5.(5, one of the eqilbim points E return to the 00C- o ---

gin. As E -- c, thelocusofoneoftheequilibriunmpointsis 0 1 2 3 4 5

asympto th lie liaE,=r -' (2a, +a,6," )E { I

= -0.1 ER, while the other one tends to (EE,) FIG. I. Varationof ra, afunction ,f .
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=i+ (y: + (uz + a n):  ' n) i
_ + an)

E= -n(u' + an)Eo, (55)

d 2E, ah dEi
p+ (2r

dt 2  + (w'an)/ dt
'+ (? +. '' + anl ) E,

=-(n+ a (56)
0 0 10. 00 .00 30.OC 4 C.00 SC.3C . ( +

6 Considering n as a slowly time-varying parameter, the fre-
E ".'-5.05 quency of electric-field oscillations is roughly equal to
E:- w 1,1(u' + an)' - arn?(u2 + an) 1]/,and the effec-

tive damping coefficient is 2y - a -(u2 + an) -'. Let Tde-
note the time interval corresponding to an ion density dip,
and t * is the minimum point of n over Twhere n(t ,) = 0.
Then w(t *) > 4Kt ) for all t in Tsuch that h(t ) and

o '_A /'2 + an(t ) have the same sign. This condition is satisfied for
2.0 10.00 0.00 30.00 4. 00 S0.00 60.00 the solutions shown here.
a Figure 12 shows the power spectra of the electric field

C-2.669 computed by means of the fast Fourier transform method.
The results resemble those corresponding to turbulence.
Also, the spectral bandwidth increases with E . as expected

-- .from physical considerations. Finally, the truncated discrete
version of the autocovariance function of E given by

= [E(A E)-EI

.00 o0.00 20.00 30.C C 4.0 so.00 60.00 (N - j +1) i-I
FREO -10' X (EI(i + i -l ]-A } (57)

FIG. 12. Power spectra ofthe electric field corresponding to the solutions of
(53) and (54) as shown in Figs. 8-10; frequency scale: 1/40.96 normalized is computed, where E denotes the mean-value of E, and A is
unit. the time-step size. Figures 13a-13c show the real and imagi-

nary parts ofp(jd ) forE' = 1.669, 5.05 and 10.0. It can be
seen that both Rep(jA ) and Imp(jA ) decay from their

mimmvalues andi then fluctuate about zero. But we can-
these solutions are highly sensitive to initial conditions.

Also, not all trajectories in the z space tend to the chaotic not deduce that the autocovariance function actually tends

solutions as t -- co. This is apparent from the fact that for to zero as the time delay r- oo as in the case of solutions on

0.108<E' < E 0 5.05, the origin z = 0 is a stable equilib- a strange attractor.
rium point, and for any E' > t ,z- is always a stable equi- 7. CONCLUDING REMARKS
librium point. We note from Figures Bb-10b that in each
case, there exists a circle with minimum radius r,.m which It was found that the single-mode equations derived
encloses the projection of the trajectories onto the (ER,E)- from the Zakharov's model for Langmuir turbulence in a
plane. Figure II shows the variation of r,. as a function plasma with phenomenological damping exhibit chaotic so-
I E as obtained from the numerical solutions. Evidently, lutions whose power spectra have turbulence-like features.
r. can be bounded by a linear fundtion of Ieo 1. This is In the case of multiple modes, if all the mode coupling terms
consistent with the estimate 9 given in Sec. 5. It can be read- are omitted, then we obtain sets of uncoupled equations of
ily verified that in each case, the projection of the trajectories the form (9) and (10). Each set is capable of producing chaot-
of the chaotic oscillations onto the (ER,E,)-plane is com- ic solutions when E I exceeds a certain threshold value (gen-
pletely contained in =Z- {E: IE + a- Eo erally different for each mode). The total power spectrum of
4V2 8.34451 E, {}, where a - 1.204367. Also, we oh- the electric field is simply the sum of the single-mode power
serve from thee solutions that the maximum depth of the spectra. This seems to imply that energy transfer between
ion density troughs increases with Eo1, and the electric field various modes is not necessary in producing turbulence
oscillates more rapidly during the ion density dips. This can which is contrary to the cascade theo of turbulence. There
be roughly explained by considering the following equations are a number of computer studies' of Langmuir turbulence
for ER and E, derived from (31): induced by interacting collapsing solitary waves based on

Zakharov's model with phenomenological damping. Per-
d + (2y - a dER haps these computer results actually correspond to some
t \+ an)/ dt form of chaotic solutions which are inherent in the model.

405 J. Mafl. Phys.. Vol. 21, No. 2, Fesbrury 1960 P.K.C. Wang 405

-F -- y-------'-------. .



SR cc

o60 .0 -0 30 .0 5.0 60 00 100 200 300 4.0 5.0 C
______TIME________________ _ TIM

Q

0. 1.00 2.00 3'.00 4.o 5.00 6.00 0.0 .0 200 .0 400 50 .00
TIME TIME

q0

-C!,

'0.0 1.00 2. 00 3. 00 4.00 5'.00 6.00 0.0 10 200 .0 .0 500 .0
TIME TM

(a)(c

0 JMO.PyLVo.2,N.ZFbuyI9 ... Wn 40



In this work, we have sought solutions in terms of the Sincedet P = [(y + A)2 4. (u- an) ]" > O, P ex-
eigenfunctions of the Laplacian operator over a bounded ists and is given by
spatial domain. Of course, we may expand the solutions in P = [(r + A )2 + (a2 + an')- -
terms of any suitable countable basis for L (2 ) and arrive at [ - (y + A )I, - ( 2 + an')I1]
a countably infinite system of ordinary differential equations + - I (A3)
similar to that given in (5) and (6). One may also consider L 2 + an')IN - (r + t )I j
directly the Hopf bifurcation problem for Zakharov's model Now, det Q can be computed by considering the matrix
(1) and (2) without resorting to modal expansions. Some r 1 O1 ]
results in this direction have been obtained recently. They S - Q O N

will be reported elsewhere. L0, P'J
Fimally, we note that the presence of the phenomeno- _ A, I 2[(E -- gp2Eo)T 6 (E)' ]A-I

logical damping coefficientsr, and F, in the simplified I - I -- - ------ --

equations for each mode m is essential for the existence of - aE7 I
chaotic solutions. But there does not exist a clearcut way of
introducing the damping terms into the Zakharov's model L (E + aE7,)based on physical considerations. Also, a detailed study of (4

the structure of the stable and unstable manifolds associated
with theequilibrium statesis necessary for revealing the na- SincedetS---(det Q)(det P-')det P-' = -( + an)2
ture of the chaotic oscillations described here. Unfortunate- + (U + an')] - N and
ly, this task is complicated by the system's dimensionality. detS A/2 -2 [(#E E -/2Eo)r ]A _ E ,
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ABSTRACT

Further studies are made on the chaotic oscillations of the single

mode equation derived from Zakharov's model for Langmuir turbulence in a

plasma in the presence of an external spatially homogeneous electric

field oscillating at the eloctron plasma frequency. First, the bifur-

cation of equilibrium states with respect to both the energy of the exter-

nal electric field and the damping coefficient of the high-frequency

waves is investigated. Then, studies are made on the onset and quench-

ing of chaotic oscillations when damping is varied. The nature of the

chaotic oscillations is explored by determining various Poincare maps

numerically.
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I. INTRODUCTION

Recently, it was shown I that the single mode equation derived from

Zakharov's model2 for Langmuir turbulence in a plasma in the presence of

an external spatially homogeneous electric field oscillating at the

electron plasma frequency and with phenomenological damping has nonperiodic

chaotic solutions. The power spectra corresponding to these solutions

have turbulence-like features. In reference 1, the chaotic solutions

were discovered through bifurcation analysis and numerical experimentation.

The structure and the onset of these solutions were not explored in detail.

Here, further studies are made on the nature of the chaotic oscillations.

First, the bifurcation of equilibrium states with respect to both the

energy of the external electric field and the damping coefficient of the

high-frequency waves is studied. Then, the quenching of chaotic oscil-

lations due to increased damping is explored. Finally, some Properties

of the chaotic oscillations are studied by determining various Poincare

mappings numerically.

II. SIMPLIFIED MODEL

As developed in reference 1, the simplified equations for a single

mode m in the Zakharov's model have the form:

dE

dtm (Um - iYmm M= nM(E + amEm) (1)

d2n dn

- +2r m+ 2n E .(E + E*) + mEm (2)dt2 Mmn -t M m M Mo

with

=.01x ' f 7V2[(2X)]OM(X) dQ ,  (3)

where a.b denotes the usual scalar product of two vectors a and b in the



real n-dimensional Euclidean space J N; N is the orthonormalized eigen-

function of the Laplacian operator corresponding to the eigenvalue -P 2 < 0;
m

ym and r m are the phenomenological damping coefficients; Em and nm are

respectively the coefficients of expansions for the electric field E and

ion density n:

E(t,x) ~E(t)ok(x), n(tx) - jn,(t)o,(x) (4)

k k

defined on the spatial domain S1 C R N . E 0 (Eol, ... EoN ) is a real

constant vector representing the normalized amplitude of the external

electric field. In what follows, we shall omit the subscript m in (i)

and (2) for brevity.

Let ER = Re(E), EI = Im(E), and z denote the 2(N+l)-dimensional real

vector (n,,EREI) T, where ()T denotes transposition. Equations (1)

and (2) can be rewritten as:

dz f E -p2n - 2ra - 24 2 Eo.ER + ( IIER 12 + 11E. 112 )dz f(z;-y,E o  •, (5)
_E R + (1 2 + an)EI

-yEI - (4.2 + an)ER - nE°

where 11 j1 denotes the Euclidean norm.

III. BIFURCATION OF EQUILIBRIUM STATES

The equation for the equilibrium states is given by

f(z;y,E ) - 0, (6)

where y and E are parameters. Evidently, z-O e R2(N+l) is an equili-0

brium state for all y,E . From the implicit function theorem, a nece-

ssary conditions for bifurcation from the main branch C- {(O,y,E ):yE. E ,

E 0C JR} is that the Jacobian matrix Jf(O;y ,E0 ) given by

2



T T01N 0ON

-' 2 -2F -211 2E 0(
f(O;y,E 0 0 (7)

0 -y N  U2 N

-E 0 -IIN -yI N J
is singular, where 0N and IN are the N-dimensional zero vector and NxN

identity matrix respectively.

Since

det Jf(O;y,E) = (y2 + 1I4)N-l{W2(y2+ W4) - 2141 jE o12}, (8)

bifurcation from can occur only when det Jf (O;y,E )=O or

10Eo112= Z2 = (y2+ p4)/(2p2). (9)

It can be deduced from the following exact expressions for the non-
= e e

zero equilibrium states ze (n ,0,E ,E ) with
e e9 R I

E= ±Eo,  E e 0)
R Ro I 1o (10

S I ( P 2 + aY-'lIEo112 ) [ y + (2a + aA-2)I[Eo1[2 ] - 1 ,  (11)
R 1 0Y 10Y

= 5y 2  iE 112 - (p2a + y 2 )

I (a2 + 62y2" 2)IEII6,,2

[11E 114 - 4ct 6&21IE 11 2 - OL (ZY F2 (12)

ne =e 2[( )2 + (E±)2] - 2 R }1IEoIi2, (13)

11Eo112 >, E2  A 2a6 -[ + (8 2+6 2y 2 )2 1] (14)0 oc

6 = (2a + alI2), (15)

that bifurcation from indeed takes place at any point (0,y,Eo)E such

that j1Eo11 = E The critical external field energy E2 increases with
o oc * Teoc

the damping coefficient y.

For any fixed y and 0 < 1E 112 < E2c, the origin z = 0 is the only

equilibrium state. When lE 112 = E2 ,2 a nonzero equilibrium state ze

3

7 -1_ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _



emerges, and as 11Eo112 increases from E2 , z bifurcates into two distinct0oc e

equilibrium states z + and z-. Moreover, the bifurcated branch correspond-

ing to ze crosses over the main branch C at c Figure 1 shows the bi-
e oc

furcation diagram for Ee, the imaginary part of the equilibrium electric

field, with lIEo112 as a variable parameter for the one dimensional case (N-Il)
I

with a bounded spatial domain 0 - [O,L] with l(x) - (2/L)2sin (irx/L) and

parameters:

il -/L, L = n//0, y 1, (16)

a (27 /L)2/(31T), -8iT(2/L 5)2/3.

Evidently, the new branch appears abruptly whenlIE 11J2 - E2 o and immediately

bifurcates into two distinct branches as }IEoll' increases from E2oc

Now, we consider the case where 1IE 0 1
2 is fixed and the damping coef-

ficient y is a variable parameter. It can be readily verified that the

trivial solution z = 0 is the only equilibrium point when y= 0. From (12),

it is evident that for real , y must satisfy:

Y < Yc - {IIE 0l2 (2ap2+ a)2- 4a }2 (17)

For 0 < y < yc, there exist two distinct nonzero equilibrium states

and they emerge into one when y = yc. When y increases beyond yc, the non-

zero equilibrium state abruptly disappears. When y , yc i p{I1E0 11
2 - P Y,

there is only one nonzero equilibrium state. Figures 2 and 3 show the

loci of equilibrium Ee and ne as y increases from zero for the one dimen-

sional case with parameters given in (16) and fixed values of lEOil2. We

observe from Fig.3 that as y-*O, ne tends to nonzero values which do not cor-

respond to equilibrium ion densities. Figure 4 shows the loci of equili-

brium electric field as y varies while keeping lIEo1j2 constant.
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IV. QUENCHING OF CHAOTIC OSCILLATIONS

In the Zakharov's model for Langmuir turbulence, there does not exist

a clearcut way of introducing damping terms into the equations based on

physical considerations. Here, phenomenenological damping coefficient YM

and r' are introduced into the simplified model (l)-(3). They may corre-m

spond to Landau damping of the high and low frequency waves given by
3

I

m ( (e2 j (mXD)~3 exp[- (PX) - 2],
e (18)

where L is the Debye length and m i/me is the ion-electron mass ratio. We

observe that the damping coefficient ym varies rapidly for small pmXD > 0.

Therefore, it is of interest to determine any change of the behavior of

the solutions as Ym is varied, in particular, the onset or quenching of

chaotic oscillations when ym tends to some threshold value. This is studied

numerically for the one-dimensional case with the fixed parameters as given

in (16).

First, we study the case with E = 2.669. It is known that chaotic

oscillations exist for r - 2.0 and y= 1.0 (see Ref.l). At these para-

meter values, the equilibrium states consist of the origin z = 0 and two

distinct nonzero equilibrium states z and z given by (10)-(15). Chaotic
+

oscillations were found in some neighborhoood of z . Figures 5-7 show
e

the loci of eigenvalues of Jf(Z ,Y,E) with E2 = 2.669 and variable para-

meter y for each of the equilibrium states z e We observe that aty - 1.0,

there exist a pair of unstable complex eigenvalues for Jf (ze,y,E ) with

E- 2.669. As y is increased, these eigenvalues cross the imaginary axis
0

at y = 4 .35. When y is increased beyond 4.35, all the eigenvalues of

Jf(z+'YE) ' E2 = 2.669, remain in the left-half complex plane. By defin-

9
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ing a parameter y l i/y, we see that Hopf bifurcation with respect to

parameter y takes place at = 1/4.35. When y= Yc = 5.3358, one of the

+
real eigenvaues is zero. At this point, z and z coalesce into one equi-e e

librium state as shown in Figs. 2 and 3. Thus, we expect that quenching

of the chaotic oscillations will occur when y 4.35 for E2 = 2.669. Nu-
0

merical integration of the system equations confirms our expectation.

Figures 8a and 8b show the existence of a periodic solution at y= 4.35 as

predicted by the Hopf bifurcation theorem. As the damping y is reduced,

the amplitude of the periodic oscillations increases as shown in Figs. 9a

and 9b with y- 4.30. At y= 3.0, a more complex form of periodic solutions

appears (Figs.10a and lOb). As y is further reduced, the oscillations

become more complex in structure and appear to be almost periodic for

2.0 > y > 1.6 (see Figs.ll-13). Finally, for y< 1.55, the solutions be-

come chaotic (see Figs. 14a and 14b). Figures 15-17 show the chaotic oscil-

lations for y= 1.5,1.4 and 1.1. The power spectra of the electric field

corresponding to the solutions in Figures 14-17 are shown in Fig.18. It

can be seen that the spectra evolve from essentially discrete spectra to

broadband spectra as y crosses the threshold value yT- 1.55. Although

the solutions shown in Figs.l0-17 start with the same initial conditions,

similar behavior has been observed for solutions starting near the equili-

+
brium state z +e

V. POINCARE MAPS

To obtain some idea on the nature of the chaotic oscillations, we con-

sider various Poincar maps associated with (4) with parameters given in

(16). Let H denote a given three dimensional hyperplane in the state

4
space 4 of system (4) whose flow is denoted by the family of mappings

F R 4 IR 4, t .IR We define a Poincare or first return map P from

13
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S C; H into S such that

P(z) = F (z)ES for all z e S, (19)

and S is transverse to the flow (i.e. (F t(z)/3t)l (z) has a nonzero com-

ponent with respect to q, the normal vector for H), where t(z) is the small-

est time t >0 such that

F (z)(z)E S and sgn((z.n)(F (z) r)n)] > 0. (20)

Let z(0) be a point in S at t = 0, we are interested in the sequence

k+l
of states z generated by

k+l zk
z = P(k ), k-0,1,2,...,0 (21)

z = z(O) C S.

0 KC 0 0
If there exist a point z and an integer K > 0 such that z z , then z

K
corresponds to a periodic solution with period T = t(z ). For non-

k=0

periodic or chaotic oscillations, there do not exist such points.

First, we obtained numerically the points generated by Poincare maps

corresponding to various hyperplanes in the state space of system (4) with

parameters given in (16) and r = 2.0 for various values of E2. Figureso

19-22 show the points generated by Poincare maps for progressively higher

values of E2 and fixed damping coefficients y= 1.0 and r= 2.0 along chaotic
0

solutions. A notable feature of these results is that the points appear

3,
to lie along certain curves in R3, which implies that the Poincare maps

associated with chaotic solutions are one dimensional in nature. But the

graphs of the Poincare maps in terms of some curve parameter are not readily

obtainable.

VI. CONCLUDING REMARKS

The results of this study show more clearly the onset or quenching of
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chaotic oscillations for fixed Ez and variable damping coefficient y as
0

compared to the case with fixed y and variable E studied earlier. As
0

y is decreased from the Hopf bifurcation point y, the oscillatory solutions

evolve from simple periodic to almost periodic solutions and to chaotic

solutions. It is conjectured that the chaotic solutions appear after

further bifurcation from the periodic solutions as y decreases from y. The

verification of this conjecture requires further study.

In this study, only the single mode model is considered. The ex-

istence of chaotic oscillations in a multiple-mode model is being investi-

gated. The results will be reported in the near future.
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ABSTRACT

A numerical study is made on the chaotic solution of the

nonlinear interaction of three positive-energy electrostatic waves

in a plasma, where one wave is growing linearly and the remaining

two are linearly damped. The reduction from the six-dimensional

system to a three-dimensional system and bounds for the chaotic

attractor are also discussed.
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I. INTRODUCTION

In the conventional theory"'' of turbulence in plasmas, turbulence

is described as the state in which a large number of collective degrees of

freedom are strongly excited. The energy of the unstable modes is distrib-

uted to other modes by a nonlinear process and then dissipated through some

form of damping mechanism. When the energy transfer between the modes is

balanced, a stationary broad spectrum corresponding to stationar. turbulence

appears. If many collective degrees of freedom are excited simultaneously

from the level of thermal fluctuation, the random character of the fluctua-

tion is preserved to some extent. If only a small number of degrees of

freedom are excited in the initial stage, there must be a randomization pro-

cess by which the system goes into the turbulent state.

Recently, it has been proposed 3  that the turbulent state or chaotic

behavior can arise in deterministic nonlinear models which have a small

'umber of degrees of freedom. Particular examples of such models have been

found in plasma physics 6' . In this paper, we consider a simplified model

governing the nonlinear resonant interaction of three waves with both linear

growth and damping rates:

dAj/dt = y1A1 - iVAA 3

d.A2/dt = - Y2 A2 - iVA1A3* (l.I]

dA3/dt = - y3A3 - iVA1A2

where A.'s are normalized complex amplitudes of waves, V is real andJ

yj's are positive numbers. System (1.1), without the growth or damping

terms, has been thoroughly investigated. We shall show that, under certain

A.
-k- ~ ~ ---------



2

conditions on y , the linear instability of the first wave could lead to

a turbulence-like state without any additional assumption for randomization.

A particular example in the form of system (1.1) will be studied in detail

numerically.

II. DERIVATION OF BASIC EQUATIONS

We first consider three nonlinearly interacting oscillators whose

equations of motion are given by

l- 2yaj+ w 1
2 a, 1  va2a3 1

a2 + 2Y2A 2 + w2
2a2 - vaja 3  , (2.1)

a3 + 2y3i3 + W32 a3 vaa 2 J
where v, yj's and wj's are real nositive numbers. We assume that the

linear damping on growth rates is small (i.e., yj <,Iwj ) and the nonlinear

coupling is small (i.e., ajv<< mW22,W32 ) . Then we can express a. inJ

the form

a. (t) = {A. (t)exp(iwjt) + A *(t)exv(-iwjt)}(v/Wj) , (2.2)

where A. is a slowly time-varying component. If the frequencies satisfy

the resonance condition W1 = W2 + W3 , then substituting (2.2) into (2.1)

leads to equations of the form (1.1), with V = (v3/41oW2 W3) /2

We can also derive equations in the form of (1.1) for the nonlinear

wave-wave interaction in a one-dimensional plasma involving two plasma waves

,I I 1. ..-
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(denoted by subscripts I and 3) and an ion-acoustic wave (denoted by

subscript 2). We assume that the resonance conditions for hoth the wave

numbers (i.e., kl =k 2 +k,) and the frequencies are satisfied. Herc, the

pair (wj,k.) satisfies the linear dispersion relation associated with the

j-th wave. We assune that the first plasma wave is excited by some external

force and has a linear growth rate "(j . The second plasma wave and the

ion-acoustic wave are excited by the first plasma wave through nonlinear

coupling and have linear damping rates y 2  and y, , respectively. We

also assume that y << w. and that the nonlinear coupling of wa'.es produces

small shifts in frequency from the linear values. 4oreover, the resonant

interaction between waves and particles is negligible. Then, the equations

for the interacting waves are described by (1.1). The amnlitudes A. and

the parameter V are defined as follows':

A (t) k 2)Re z(k) V j (t) , j=1,2,3, (2.3)

k 1 23 [k 2) R 11)k, /2. (2.4)( 2 ) /k,, k .k )/ r_ 3lI

£(k1 ,k 2 ,k 3 /j=1 ] ~k . 24

Here, the parameter V is real, Cj is the slowly varying component of

"7v electrostatic potentional of the j-th wave, and J1) and -(2)

- first and second order dielectric constants obtained from the

lasv-Poisson equations.

r ro ohtatn explicit expressions for the variables and para-

.er ,he following simle model: weak electron beams are

les of an infinite plasma slah with thickness 1.

____ I
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We assume that there exist two eigen-modes of the plasma waves and one

eigen-mode of the ion-acoustic wave, and that the velocity of the beam in

the positive (resp., negative) direction is between the phase velocities

of the two plasma waves propagating in the positive (resp., negative) direc-

tion. We also assume that the interaction between the beam and the fast

plasma wave can be neglected. Then, it is sufficient to consider the system

consisting of the beam in the positive direction, the plasma wave '1' and

the ion-acoustic wave '2' traveling in the positive direction and the

plasma wave '3' traveling in the negative direction.

We further assume that: (i) the electrons and ions in the plasma and

the electrons in the beam have time-independent Maxwell velocity distribu-

tions in the zero-th order, (ii) the Landau damping of wave '2' is negli-

gible as compared to the damping due to Coulomb collisions, but the Landau

growth rate of wave '1' due to the beam is larger than the collision damp-

ing rate, and (iii) the plasma is nonisothermal so that the Landau damning

of the ion-acoustic wave is negligible. Then, the amplitudes A. , the

parameter V and the damping on growth rates yj are expressed explicitly

as follows:

A- . {L 2 j~ 3 A 2 2 2  (2.5)

e 2

V 1 c k3  kk 2k3  1 (2
87r am P c  3 (2.6)

T Tc mC pes 47-kmc iJj

V Y - r T J wb b 11 2 (2.7)

cw
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Y2 Tr e-j kCs Y3 YCoz (2.)

Here, y'oz is the collisional damping rate, me (resp., mi ) is the

electron (resp., ion) mass, e is the electron charge, Wpe (resp., wpihi)

is the electron (resp., ion, beam) plasma frequency, VTe (resp., VT ) is

the electron thermal velocity of plasma (resp., beam) , c. is the sound

velocity of plasma and vd is the beam velocity.

It can be shown that, if A, = A2 = 0 at the initial time, then

Aj(t)- - as t--. Hence, the solution of (1.1) is not uniformly bounded

with respect to the set of initial conditions whose closure includes the

set such that A, = A2 = 0 . Thus. the assumptions made in the derivation

of (1.1) may be violated in some cases. Such a situation will be discussed

in Section 4.

III. ANALYSIS OF THE SIMPLIFIED MODEL

We eliminate the parameter V from (1.1) by setting Xj = -VA. (j=l,2,3):

i1 = Y1X1 + iX2X3

2 = - Y2X 2 
+ iXX 3  . (3.1)

X3 = - Y3X3 + iX2X2 *

The time derivative of = f{2XIXI* + X2X1 + X3X*} is given by

2yIXI*X - y2X2X2* - y3X3X3* Hence,

(t) (O)exp[2 M={'Yy, 'Yya)}t1 , t6 (-cc) (3.2)

4f - . - .,
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Therefore, the integral curve of (3.2) exists for all tc (- ,')
iGj

Setting X. = r.e 6(j=],2,3) , with positive r. , (3.1) becomesJ J J

' + i r = y r +  i r 2 r 3e 
-  i (e 1 

"e 2 - 13 )

i2 + i62r2 = - _y2r2 
+ irlr 3ei( @I - @2 - @3) (  (5.3)

r 3 + i6 3 r 3 = - Y3 r 3 
+ irlr2e - 3)

Taking the time derivative o-F n = Re(XX,*X3*) = rjr 2r3Cos(0 1-02 -e3)

we have

= - (r 2 +r3 -YI)T (3.4)

Hence, if Y<yz+y3 , n(t)- O as t--c =

Let Y = (X1 ,X2,X 3 ) , then the set E = {Y:n = 0} is an invariant set

in the sense that, if Y(O) E , then its corresponding full orbit is con-

tained in E ; i.e., Y(t)EZ for all tE (-o=) The subset

0 = {Y:r j rk = 0, j k, j,kE {1,2,3}} of Z is also an invariant set.

We shall show that, if y2 # ys , the subset E = {Y: cos(6 1 -8 2-93)

= 0,sin(ei-e 2-e3) = VI-E 0  , V=l,-l , of Z is an invariant set, in

this case, in the sense that, if Y(O) E , then Y(t) E V for almost

all t E - . Assume that Y(0) EZV . Since (3.1) has a unique solution

for each initial condition, Y(t) E - Zo for all tE (H) 'ence, at any t,

at most one of the r. (t)'s is zero. Furthermore, all of the r. (t)'s are

non-zero for almost all tE (-ca). For, if Y2 #3 , Eq.(3.I) does not

have a solution such that one of the X.(t)'s is identically zero on some
3

interval in -Z0 . Since n(t) = 0 for all t e (ooo) , it follows that

. 9,



eon(e1 (t)]-e2 (t) -e3 (t)) = 0 for almost all t. (-,x) .forcover,

.;n(e 1 (t) -e 2 (t) -e3(t)) = j for almost all t, (-',') For, if

sin(8 1 (t) -eZ(t)-8 3 (t)) has a discontinuity at tj , then rj(tl)rk(tl) - 0,

j #k, j,kE (1,2,31 , since the real parts of the right-hand sides of Eq.

(3.3) are continuous. This implies that Y(t,) EZa , which is a contradic-

tion. Hence, EV is an invariant set, in the sense defined above.

In what follows, we consider the behavior of Y(t) with Y(O) e,

where v=l or -1. For t such that Y(t)E Z , (3.3) reduces to

j + i01r, 
= yIr1 + vr2r3

i2 + ir 2 = - y2r2 - vrlr 3  (3.5)

i3 +i03r, = - y3r3 - vrlr 2

Since I[X.(t)(( is finite at finite t , the integral curve of (3.5)

for t such that Y(t) Z% is identical to that of (3.4) for tE -

Hence, we can assume that Eq.(3.5) holds for tE (

As mentioned earlier, all of the r. (t)'s are non-zero for almost

all tE - Hence, 6 i(t) = 0 for almost all t except when r (t)= 0

Since Xj (t) is continuously differentiable at all t , 9 (t) =9 e.(0) + rn. (t)

Here, n. (t) is an integer-valued step function which has discontinuities
-we (0)= irn. (t)

when r (t)=0 . Let x.(t) = vXje vr e j = 1 ,2 ,3  Then,

x. is real and (3.5) reduces to3

il = YIXl - X2X9

2= - Y2x2 + XIX 3 ' (3.6)

X= - Y3X3 + XIX 2 ,
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The assumption that y1  + - y also leads to

ax ayY Y 3 < 0

which means that the phase volume shrinks uniformly. The Lorenz system

also has this property3 .

The equilibrium points of system (3.6) are easily obtainable. If

yj < 0 , the origin P0  is the uniaue equilibrium point and it is asymp-

totically stable in the large. If y1 > 0 , the equilibrium points are
1/2 y /2 )/2

PO and P' (G(Y2Y3) , , V(YIY 2) ), (',WV) C

I The point P0  is a stable node in the

(y,z)-plane and a saddle point in a plane containing the x-axis. At

P V ,the characteristic polynomial of the linearized vector field of

(3.6) is f(X) = X3 +X2 (Y2 +Y 3 -YI) + 4y 1 Y2Y3 = 0 - Since the polynomial

has one negative root and a pair of complex roots, f( ) =

(x+c){A - (a+ib)}{A- (a-ib)} where c>0 . By comparing the coefficients

of polynomials, we have

2a-c = - (Y2+Y3-YI) , a 2 +b 2 = 2ac , (3.8a)

c(a 2 +b 2 ) = 4-1YZY3 .(3.8b)

Fq.(3.8b) implies that a> 0 Hence, at each pV , , there

is a bistable plane in which PV is an unstable focus.

Eq. (3.6) is invariant to the interchange of subscripts 2 and 3.

Hence, without loss of generality, we assume that Y2 <Y 3 . Let X= (x,y,z)

(x1,x2 ,x3). The time derivative of a(t) _ y(t)/z(t) is given by

m9



CX (y3 - Y2 )CL + x(l 2) (3.9

which is equal to L;(Y 3 -Y 2 ) at y=iz , u = i,-l . Since Y2<Y 3 , the

set r = {X :Y -> }zj) is a positive invariant set; namely, if X(i) ,E

at some t , then X(t) E F for all t>t .

We shall show that r is an attractor in the sense that, for any

initial point X0 , X(t) converges to F as t-- (i.e.,

Zim inf HJX(t) -Xfl = 0) . Since F is a positive invariant set, it is
t- X'E
enough to show that, if X(t)E -1 for all t o [0,co) , X(t) converges to

F as t-- . Let (t) = y2 (t) - z2(t) , then the time derivative of S

is given by

= 2(y 3 z2 - y 2y') = 2(y 3 - Y2 -Z 2" .2( (3.10)

if x(t)E -f for all tE [O,') , then Iy(t) < Jz(t)l (or 3(t) <0) and

!y(t) I < (Y3/Y2) I/2 z(t)J (or (t) > 0) for all t E [0, -) . Hence, 3(t)- 0

as t -- . For, if there is a a.< 0 such that 6(t) -e. as t- - ,

then (t) - ZY23> 0 from (3.10), since -8(t) !5 z 2 (t) . This implies

that a(t) does not converge as t , which is a contradiction. Thus,

X(t) converges to ar c r as t - Hence, F is an attractor.

If X(i) e r for some i , the X-trajectory is trapped in

F+= F n {X:y>O} or r_ = f n {X:y<0} for t>_t . Only this case

was observed in the computer experiment and some numerical results for

such a trajectory will be presented in the next section. The set F+
! -1

(resp., r_) has three equilibrium points PO , P1,1 , and P-1 ,, (resp.,
! -1

P0 , P-1,- and P,,- 1) and the combination of these noints is identical

3
to that of the standard Lorenz attractor

.4 '........... .........



10

lie shall determine the behavior of the trajectories such that

X(t) E - r for all tE [0,). Since Eq.(3.6) is invariant to changing the

signs of any two of the three variables, it is sufficient to consider the

set such that z>0 . Let W , {X :ax I =ax, I'yl = y, z >0}-W ,

o E {-l,O,l} . Here, W - {P } u {x,y,z-axis! The set W is

the invariant set and the X-trajectory with X0 O W does not hit W in

finite time. In what follows, the trajectory in W will be disregarded.

Consider the following sets (see Figure 1):

S = {X:ct=01 n (WO, 0 -)

W, = {X :&>0} n (Wo, 0 - F) (3.11)

W2 = {X: <O} n (WO,0 -)

We assume that X(To) E SnW1, at some T. In W , (1,1) =

IXf* , 1I1=a , z<0 (3.12)

Hence, the X-trajectory is transverse to S and enters W, nT 1 ,_1

In W, nW1, 1  . -l<c<0 , &>O, x>0 and x>O. Hence, from (3.9),

increases. Thus, the X-traiectory enters W1 nW1', 1  in finite time.

Let X(T1 ) E (x,z) -plane n W, , 0 and X(T 1 +E) E W1 nW1 11  , where

X(T)EW nW,1  for all rE[Tl,T1 +E] . In W, nW, 1 , O<a<l , a>O

and x>0 . Hence, from (3.9) if X(T) EW1 nW1, for all TE [T 1 +c,t],

a(t) - (y 3 - y 2)a(t) >- (y 3 - y2)C(T +E) > 0 . (3.13)
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This inplies that the X-trajectory enters W, nW_, I  in finite time, since

it is transverse to the (y,z)-plane. Let X(T2) E (y,z)-plane )W1,' and

X(e2 + ) EW nW-,, 1  where X(T) EW, nW_, for all -r E [T2 2 +]. In

W1i W , x<O ' X<0 , y>O , y<O , z>0 and :<0 Hence, if

X(T ) 6NI nW_ 1. 1 for all r o [T 2 + E,t]

x(t) !5 YIx(-r2 + ) <0

- y'y(t) (3. 14)

'(t) !5 - y 3 z(t)

Consequently, if X(t)eW1 nW_ 1  for all tE [0,c), then x(t)- ,

y(t)- 0 and z(t)- 0 as t- - Otherwise, the X-trajectory hits

SnW-1 ,0  in finite time. Similarly, if X(r 0)E S n-, 0  at some r,

the X-trajectory converges monotonically to the x-axis ( x(t) -) as

t - c or hits SnW1 , 0  in finite time. Thus, if X(t) eW0 ,- r for

all t6 (0,) , then as t- , the X-trajectory converges to the x-axis

monotonically after some oscillation about the z-axis, or oscillates about

the z-axis for all tE [0,-) (i.e., for any large t , there exist t,

and t2  such that t2 > tl > t , X(t1 ),X(t 2) E (x,y)-plane and the X-tra-

jectory for [t,t 21 circles the z-axis).

Let us see roughly how the trajectory oscillating about the z-axis

for all t E [0,) behaves. Integrating (3.10),

0 < f z2 (t)dt B( -8(I)+ 2Y2 f 8(t)dtJ <o . (3.15)

T o i
Th scodinquliyholds since a(t) < 0 .Likewise, |y2(t)dt <

J0
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By studying carefully the vector field of (3.6), we know that y (t)

(resp., z (t) ) takes a larger value than (-(1y3) / 2  (resp., (-YIY)/2)

at each time when the X-trajectory encircles the z-axis. [encc,

y2 (t)-O and z2 (t) A -O as t- . Therefore, for any small c > 0,

the time duration for which y2 (t) > a (resp., z2 (t) > ) converges to

zero as t-- . Thus, y2 (t) (resp., z2 (t) ) behaves as a train of

pulses whose heights are larger than Yy 3  (resp., YIY2 ) and

whose widths converge to zero as t-)

The X-trajectory, which is in W, n W- I, or 11V2 n W1,1 for all

tE ft,) for some t, and converges to the x-axis monotonically, is

unstable in the sense that any small perturbation of a can shift X into

F or cause X to oscillate about the z--axis. For &=(Y 3 -Y 1),

(JYJ =uy) on ar and the X-trajectory is transverse to S , and 3r and

S approach each other as IxI -- . The X-trajectory which oscillates about

the z-axis for all tE [0,o) is also unstable in the sense that X is

shifted into ' by any small perturbation of a . For a - (Y3 -Y2) I

(Iy= uy) on 3r and X(t) converges to DF as t -- Hence, from the

practical standpoint, the X-trajectory which remains in -(W uF) for all

tE [0,-) can be disregarded. In fact, such trajectoiies were not observed

in the computer experiment.

L . -.--- --
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TV. Vb'MERICAL EXPERIMENT

In the numerical experiment, we used the system:

X -- YX - YZ

y - - y 2 y + zx (4.1)

Z=- z+xy

which is obtained from (3.6) by the substitution:

y 3t -t , y3/y 3 - yj , for j=1,2,3
(4.2)

x1/y3-.x , x2/Y ' y , x,/y - z

We set plasma density no = 1.62 X 10 (/cm 3) , beam density nb=l.Sl104

(/cm3) , plasma electron temperature Te = 0.25 (eV), beam electron temp-

erature Tb = 0.033 (eV) , mi=l.16x10-2 3 (g), (Li ion), L=100 (cm)

2TL/k 1 =7 , 271L/k 2=13 and 2TrL/Ik 3 I=6. Then yj<< j in (3.6) and

y2 =0.4 in (4.1). For y, satisfying 0<y1<y 2 +y 3 , Vd S.S7x10e

(cm/sec) (88.2eV).

The trajectories for various values of y1 E [0.2,0.6] are shown in

Figure 2. The minimum value of Y2 +y3 -yI is 0.8 for Y1 E [0,0.6].

Hence, from (3.7), the trajectories in Figure 2 are on the set whose phase

volume is almost zero and which resembles a surface.

In order to understand qualitatively the dependence of the trajectory

behavior on y, , we use a simple model shown in Figure 3. This model con-

sists of two planes K, and K2 containing the unstable foci F1 and F2

respectively. The trajectories spiral slowly away from F, (resp., F2 ) on

--- .- r --- -- "--- - r.---- -. . , , ,--
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K1 (resp., K2 ) and jump from K, (resp., K2 ) to the line L, (resp., L).

Let < be the ratio of the frequency and the growth rate of the spiral

trajectory. In the actual system, <= Jbi/a at PV , (,',v) _ 2 , and

from (3.8),

( 2 _ 3) 3 /( 2 +1) - (Y, Y3 -Y 1 ) 3 /Vy 2y 3  , (4.3a)

&I - ( -3)2 (K 2 
+ 9) (Y2 + Y 3 -v 1 ) (2y + yl + Y) < 0 . (4.3h)

dy, 4(1 + <Z)1 Yz¥3

Hence, as y1  increases from 0.2 to 0.6 , < decreases from 5.56 to

3 monotonically. Furthermore, Pi, 1  and P-1, 1 move away from the x-axis

perpendicularly to the x-axis. Taking into account these properties of

the actual system, we consider five cases as shown in Figure 3. Here, as

the system changes from (a) to (d) , K increases and F, and F2

move upward. Thus, the transition from (a) to (c) in Figure 2 is simi-

lar to that from (a) to (c) in Figure 3.

In Figure 3(a) , the focus F, (resp., F2 ) is below L1  (resp., L2 ).

Therefore, there may exist various tyoes of trajectories shown in the figure

and their combination leads to the trajectory as shown in Figure 2(a).

Since the trajectory can be arbitrarily close to the origin, the attractor

may be unbounded. In Figure 3(b), F, (resp., P 2 ) is above L, (resp., L2 ).

Consider the trajectories tangent to Li and L2 at G1  and ,2  , re-

spectively and the shaded region which they surround. This region is ob-

viously a local attractor in the sense that any trajectory sufficiently

close to the region enters the region at some time and remains there.

41 __ _ __ _
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This case corresponds to that in Figure 2(b). As < takes on larger values,

the trajectory tangent to Ll (resp., L,) becomes closer to ,1 ,resn.,fl

Assume that, for some value of < , the point B2 is above A2  , as shown

in Figure 3(c). Then, the local attractor of type (b is replaced by

that of type (c). In Figure 3(c), we have omitted another local attractor

which is symmetric to the one shown under 180°-rotation about the v-axis.

We have also omitted the points Al, Bl, D,, and G on L1  and E, and

H2 on L2  , which are in the omitted local attractor. If the points B.

and C. are located between E. and H., j = 1,2 , then these two attrac-

tors are separated and interlinked with each other. This case corresponds

to Figure 2(c). Assuming that K is sufficiently large so that D2 coin-

cides with G2 as shown in Figure 3(d), the local attractor of type (c)

disappears.

In Figure 2(d)-2(f), stable interlinked double limit-cycles and a

single limit-cycle are observed. They have a small numeber of loops. In

order to understand their formation, we consider the one-dimensional re-

turn maps of trajectories of the actual system. Figure 4(a) shows the graph

of the value x of x on the plane T+= {X z=0 ,x,y >01 with respect

to the previous value of x on the same plane. In Figure 4(a), the circled

points indicate the positions of the observed limit cycles. Actually, as

shown in Figure 4(b), the mapping from a sufficiently small interval con-

taining the circled point on the x-axis into the x-axis is a contraction

mapping with respect to the length of interval. We now assume that the

actual system has a transition such as that from case (c) to (e) and

then to case (d), as shown in Figure 3. Figure 3(c), (e) and (d) implies

that, as K increases, A2 and D2 approach G2 , while B2 and D2

approach each other more slowly. Then, the local attractor becomes narrower

Ar- ..
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and finally the double-loop local attractor case (e) appears and lasts until

case (d) occurs. It becomes more probable that the interval for contraction

mapping appears as dx/dx decreases in the local attractor (indicated by

a solid line) in Figure 4(a), which '-npens as the local attractor becomes

narrower. Thus, as < increases, limit cycles having a small number of

loops appear. From Figure 4(a), a single-loop limit cycle must apnear after

a double-loop cycle. It cannot, however, exist in the local attractor of

type (c). This may be the reason why the interlinked double limit-cycles,

each of which is a single-loop, are not observed in the actual system.

In Figure 4(c), we also show the graph of values x of x on

T (resp., T_ {X :z=0, x <0, y>0}) with respect to the previous values

of x on T (resp., T+) for y, =0.2 and 0.45 . Figure 4(a) and (c)
10

show that the return maps are 'folded' for y1 E [0.2,0.489]. The at-

tractor produced by such a map is called a 'chaotic attractor'. 10 In this

attractor, there may exist stable periodic solutions. If they exist, the

attractor is not a strange attractor. Here, by a strange attractor, we

mean a positive limit set of the integral curves of a differential equation

which is neither empty nor an equilibrium set nor a closed orbit. Since

the size of the region of attraction for the stable periodic solution is

usually small, a small perturbation will expel the trajectories from the

region. Hence, even if stable periodic solutions exist in the attractor,

we actually cannot distinguish a chaotic attractor from a strange attractor.

We cannot prove here whether our system has a stable periodic solution for

( E [0.2,0.489]. Hence, we do not know whether the attractors obtained

in the experiment are strange attractors.

If the attractor A of a system is ergodic and ii(X) is a defined

measure on A , then for any smooth function f

-AtI II
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I T
= JA f(X)du(X) = Z£r Jdt f[X(t)] 14

Also, if the time evolution of the system is mixing, then for any smooth

functions f and g

(T) f g - JA f[X(T)] g (XO)du(Xo)

= - - Lim 1 fTi dt f[X(t+-r)] g [X(t)] (4.5)

converges to zero as T -- . This property means that the time evolution

of the system trajectories is highly sensitive to the initial condition.

The solution with such a property is defined as a turbulent solution.' 5s

We do not know whether our system has the property of ergodicity or mixing.

In order to obtain some idea on the sensitivity of our system to initial

conditions, we have calculated the autocovariance functions R(t) of x

for y, = 0.2, 0.45 and 0.49 (see Figure 5). Although we cannot draw

any definite conclusions from the results, they suggest that R(t) conver-

ges to zero as t -- and the system has the mixing property.

We shall consider whether the solution of system (3.6), with a

specified initial condition which is not on the xy or z-axis, is uni-

formly bounded on the time interval [0,-) . We have calculated, for some

initial conditions, the ratio P(X) of the sum of the time duration when

x(t) exceeds X for te [0,T) and T ; namely, P(X) = [length of

(t x(t) -X, 0 st-T}]/T . In Figure 6, we have plotted only those values

of X for which P is insensitive to the initial conditions. As T in-

creases, the set of such values of X also increases in size. Hence, it is
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likely that, as T- , P approached P , which is independent of the

initial conditions. If this is true, then P (X) 0 at finite values

of x , for we can choose an arbitra" ily large initial condition whose

corresponding trajectory also has P. (X) Thus, if P exists, the

solution of (3.6) with any initial condition is not uniformly bounded on

the time interval [0,-) .

If P0 exists and decays faster than 1/X3 , then from the physical

point of view, we can state as follows: the wave energy can be arbitrarily

large over a finite time interval, but its time duration is so short that

the time-averaged energy Zim (1/T) x2 (t)dt = x2 P00 (X)dX is finite.

Then, the unboundedness of system (3.6) does not contradict the physical

requirement that the energy of a system must be finite.

We must show that the assumptions made in Section 2 in deriving

(3.6) are consistent with the numerical results, or that the assumptions

are valid for the observed values of JX(t) . Although this is true,

it is still possible that, at some t which is not realized in the experi-

ment, IIX(t)II is so large that the assumptions are violated. If the

value of IIX(t)JJ violating the asstmptions is much larger than the ob-

served value of [fX(t)JI , the violation of the assumptions rarely happens

and the system (3.6) is valid most of the time.

Nonlinear terms in (1.1) produce only small shifts in frequency,

since IVAI or IVAI a y xl<<w, for the observed values of Ix(t)I

fIX(t)II . The electrostatic potential of plasma wave 'I' is given

by * i - {y,/V(2k,1
2 /37wpe)}X . Hence, the energy density per unit wave

number at k, , which is comparable to that at k3 , is given by

E, = k,2 /1
2/87 10-1 x2 (erg). This is much smaller than the kinetic
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energy of the electrons Ekin  6.15 x 10-13 (erg) for the observed values

of x(t). Hence, VTe is constant since waves '1' and '3 are only plasma

waves excited in our model. Therefore, y2 , y, and V are constant for the

observed values of x(t). The bounce frequency of trapped electrons is

given by wB = (ek21l11/me)/2= 3.37x104lx '/2 (sec-1). The beam particles

pass through the plasma in L/vd = 1.8x 10-7 (sec) , which is much smaller

than the trapping time 1/wB = 2.97x 10-JxF -/2 (sec) for the observed values

of x(t). Furthermore, the velocity distribution function of the beam is

time-independent at the surface of the plasma. Hence, the velocity distri-

bution function of the beam can be approximated to be independent of time

and space in the plasma slab. Thus, y, is constant for the observed values

of x(t).

V. CONCLUDING REMARKS

We found that the behavior of the system of resonant three-wave

interaction with linear growth and damping terms is completely different

from that without such terms or that approximated by a two-wave model.

Although it is not proved mathematically that the system (3.6) has the

statistical properties of ergodicity and mixing, numerical results show

that the solution (3.6) is very sensitive to its initial condition. This

suggests that a turbulent state can be produced directly by a linearly

unstable wave through the interaction with two linearly damped waves. We

note that, in such a mechanism, neither any additional input of random-

ness nor any interaction between a large number of waves is necessary to

produce a turbulent state.

.... _ _,_ _ _ __-_ _ _ _ _ __......_ ,- - - - - -
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System (3.6) is a highly simplified model with many assumptions. In

an actual plasma, however, many wave-wave and wave-particle interactions

must be considered. Very little is known about the chaotic property of a

system with dimension m -> 4 . It might be completely different from that

of a three-dimensional system. Hence, at present, it is difficult to cor-

relate the numerical results obtained for system (3.6) with the turbulence

in an actual plasma.

it - - ----- _--- -_ _ _,,,, |
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FIGURE CAPTIONS

Fig.l: Sketch of the surface S where d(y/z)/dt = 0 , the sets

W, and W2 separated by S and the boundary ar of the

set r.

Fig.2: Projections of the phase-space trajectory of equation (4.1) onto

the (x,z)- and (x,y)-planes for t. [0,3,276) and various

values of y, (a) y, = 0.2, (b) y, = 0.45, (c) y, = 0.489,

(d) Yl = 0. 4 9 , (e) y,= O.S, (f) y, = 0.6 ; tr = transient.

Fig.3: Sketch of the local attractors of the idealized system.

Fig.4: Return mappings of the actual system.

Fig. S: Autocovariance functions R(t) of x(t) obtained from

32,768 data points for tc [0,6,554).

Fig.6: The ratio P(x) of the sum of the time durations when

x(t) X for te [0,T) and T; T - 6,554
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ABSTRACT

The stability of planar, mode-converted, lower-hybrid solitons

to transverse perturbations is investigated. Two classes of modes are

found. In the lowest order, the stability of each class is related to

a particular term of the equation governing the nonlinear evolution of

these waves.

7



I. INTRODUCTION

It is well known that one-dimensional Langnuir solitons are

modulationally unstable to transverse perturbations. ' As a result of

the instability, the soliton breaks up into collapsing bunches with longi-

tudinal and transverse dimensions of the same order.' , There is much

interest in electrostatic plasma waves with frequencies near the lower-

hybrid resonance frequency as a possible method of heating tokomak plasmas.

According to linear theory, cold-plasma waves, excited by an rf source

at the surface of a magnetically confined plasma, propagate in resonance

cones 3 into the interior of the plasma until they reach the lower-hybrid

resonance layer, where they may mode-convert to a slow hot-plasma wave. '5

Nonlinear ponderomotive effects on the cold-plasma wave 6 , as well as the

mode-converted lower-hybrid wave7 , have been examined in a two-dimensional

geometry. Recently, the effect of a third dimension on the cold-plasma

wave was studied and it was found that perturbations transverse to the

soliton structure were unstable. 8 An equation governing the nonlinear

dynamics of mode-converted lower-hybrid waves in three dimensions has also

been presented.'

In this paper, we address ourselves to the stability of a mode-

converted, lower-hybrid, planar soliton to perturbations in the transverse

direction.' We find that these solitons are also unstable.

,i 'l-
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II. EXISNCE OF UNSTABLE MODES

The equation governing the nonlinear evolution of mode-converted,

lower-hybrid waves is, according to Ref. [91,

i UL+aIP2 
'*+S a + 1o JI= + a0 (+.)

where

Ka  + 1p C) 2 - /w)2  , K(1 l-( K 1//)

2

Yo 7 Y Ap/K) I so/ (K +K I p/C)a(e e

+Pe Ce Pi C

in which w and w denote the ion and electron plasma frequencies,

0 2 Pe eCezv/ce)

and i are the electron and ion cyclotron frequencies, and

i  2T./m. ve2  2T /me In Eq.(l), is the normalized field

amplitude [KI/4no (Ti +Te)Ao] o associated with the electrostatic poten-

tial t of "te wave .which has the form

D - exp[i(Kz/Ao ) 1/2 X-iwt] . (2)

"p p -- -

4-f _ _ __.._ _."_..._ _ __... . .. ..
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We scale Eq. (1) as follows:

Z = aoZ , X or , Y=y (3)

and set

= a060 , a = So ° , o = 6oy o  (4)

Then Eq. (1) takes the form

2zB

T T IazI+)+P y 0 (5)

which is the usual nonlinear Schr6dinger equation with two additional terms.

For a ==0 , Eq.(5) is known to have the solution

= 41A seah(A9)exp[-iW0 T +ikoz]

- 0( )exp[-i 0 T + ikoz] (6)

where

inZ-VT , V 2k o , A 2 k 2-, 0 (7)

which is stable to perturbations in the z-direction.

Next, we linearize Eq. (5), setting ip= o + 6&p and assume that

- [F(C,T)cos(k y) + G( ,T)sin(k-Y)]e . (8)

Eq. (5) then reduces to a linear combination of terms proportional to

sin rv-) and coskQ ) . Setting the coefficients of each of these

equal to zero yields

;?r '
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i F-- (L +Sk 2)F - 2 (F+F*) - k a Z(G+G*) (9);T 0 )' y

i a G = (L + Bky)G - <,t 2 (G+G*) + k 0,2(F+F *) (10)DT 0 yYa

where = K02

Lo = __ + A 2

is a linear operator.

If we introduce

F = u+iv , G = r+is (u,v,r,s real) (11)

and set n,= and1 Eqs.(9-10) take the formand an CO VS

5- 1 = (Lo + eky/)C 1  (12)

" C" - [(LI + By 2)E - 2ak y, ]nl (13)

where L . L°  2K 2  , E - 0 1 and a= 1 0 We note that

L and L1  are self-adjoint operators and

Lo0(V = 0 (14)

Assuming that

I = ne- + c.c. , i1 + C.C.

Eqs. (12-13) reduce to

in - (Lo + Sk y2)C (15)

ir, = [ (L1 + Bk)E - 2ck y 2a]n (16)



The only eigenfuction of L that vanishes at infinity has an eigenvalue

of :ero. Therefore, according to Eq. (15), ky= 0 is the only marginally

stable state corresponding to = 0 .

Eqs. (15-16) can be reduced to the form

(L°  t+ Ay)(n 1 +Bky 2 )E - 2akd P2an = , (17a)

[(L1 +8ky 2)E - 2ao2a](L 0 + ky)2  . (17b)

.! -2

For mode-converted lower-hybrid waves, K 1 KH - F , K E

where 2=m e/m . This implies that

Sky2/A2 yo kV2 V < (18a)

k y02/A2 << 1 , (18b)

cak 2 /icb << 1 , (8c)

where k_ is the component of the propagation vector in the original coor-

dinate system. Also, k 2/k 2 << E2 , and YkZ < 1 .',9 For values

of ky in this range, Eq. (17a) can be solved by expanding n and S12 in

the form of a perturbation series,

o n I 2 =+ 1 + 22+ etc.

In lcwest order, Eqs. (17a,17b) reduce to

LoLlno 0 , LLo o  0 . (19)

'? ______ _ _____ __ _______
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In order to determine no  and Co ' consider the fLnctions,2

uo 2 - , (20)

.According to Eq. (14),
4-

novb -0 (21)

By differentiating Eq. (14) with respect to C and A2 , we find that

Lv= -
4-  

.(22

+ +

Lov -uo 0 L -U vo  , lU -- I . z

Eqs. (21-22) inply, that

Lo0L -0 , L - 0 (23)

The only solutions of Eqs. (19) that vanish at infinity are Uv . Therefore,

o - c + C2, I

o =cl 0o + C.,%% 0cv' 4o

are the proper eigenfwnctions of Eqs.(19), where cI , C2 , c1
1 , c2' are

constant vectors. The parity of u0 ,v0  is even, while that of uo Vo  is

odd with respect to .

In first order, Eq. (19a) takes the form

LoLln 1 + [k y 2 (L 4-L1)E - no2y2 =o io . (24)

":e define the scalar product of two fumctions as follows:

<uv> Jf- d~uv.

Taking scalar products of Eq. (24) with vo  yields0
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Sk7 < V v IV 0 >C <v=u (25)

and

-- ak <u-121-a1 = ;j<v-jU>C2  (26)

where we have used Eqs. (21-23) and the self-adjoint property of L° and L .

We note that

V !+ 4A v+ +  + (27a)01o 010 =aA v. 4 >>-- -> -16A < -% ->-- I'% -- (27b)
< o ' o U <V- 16 A3

< u Oj1- > 64 As  (27c)

Therefore,

, =- 48kA (28)

1+ y (8

The eigenvalue I is obtained from Eq. (26) by solving the determin-

antal equation

S Y2< U 1 U > - < voU0 >2aky < ?I14 2 ju.,>

... . 0 (29)

frcm which we find

4 e 32 A4 (30a)

:2. ±(a 2 b 2)/ e !ie/2  (30b)

4; 1__ 
_ _

.. .I-



where

a A-.k , b-= - , - artanb/a)

with growth rates

2 ky AV-

16  + 6k2 5A

Since the mode-conversion region is excluded CkZ/kz )K I << 1 , from which

we find that SkV1/cA < 2 , so that

III. CONCLUDING RI ARKS

According to Eqs. (28,30), unstable modes of either parity exist. In

first order, positive parity states are driven unstable by the term

-oi 3z/3Y2j , . If o were absent, Eq. (1) would be of the same form as0o. 0

the equation gcverning the nonlinear evolution of Langmuir waves with ion

inertia neglected. It is this term which is responsible for the instability

of Langruir solitons. Instabilities associated with negative parity modes

are due in lowest order solely to the additional nonlinear term

[3 /9aY I z ] " which affects the stability of positive parity states in

seccnd order. The relative effects of these two terms can be judged by

comparing growth rates of positive and negative parity modes. We find that

1 10 P< < 1 in regions which are not mode-converting, which indicates

that the term 50 [ / 3 ] is strongly destabilizing. We therefore

0A



e'pect large local values of the electric field to exist as the wave prop-

agates away from the lower-hybrid layer, thus causing the soliton to break

up into many bunches, which move apart, spreading energy throughout the

plasma.
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ABSTRACT

Chaotic oscillations or strange attractors in bilinear systems

with linear feedback controls are explored, A simple sufficient condi-

tion for nonexistence of such oscillations is given, Also, the con-

struction of ellipsoidal bounds for the strange attractor is discussed,

The results are applicable to the well-known Lorenz equation and other

eqations which are known to have chaotic oscillations.
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I. INTRODUCTION

Recently, it was discovered that the nonlinear mathematical models

of a number of physical processes exhibit chaotic nonperiodic oscillations.

A simple example is the Lorenz model [1] for thermal convection in a fluid

layer given by

[ 1 (x2  x1)
SX 2  rx I  X2 - xIx 3  ' (1)

x 3 . -bx 3 + x X2

where o,r and b are constant parameters. It was found that for certain

ranges of these parameters, the trajectories of (1) in the state space are

attracted to a nonempty set which is neither an equilibrium set nor a

periodic orbit. On this set, the trajectories exhibit chaotic nonperiodic

oscillations. Ruelle and Takens (2] called such a set a "strange attrac-

torI. Oscillations having similar chaotic behavior were discovered in

other models such as those for chemical turbulence [3], population dynamics

[4], disk dynamos [5] and plasma turbulence [6]. A remarkable feature of

such oscillations is that their apparent chaotic or random behavior is

intrinsic to the model which is completely deterministic in nature.

In this paper, we consider a bilinear system of the form:

dx/dt - Ax + uBx (2a)

defined on the n-dimensional Euclidean space En whose inner product is

denoted by (.,.>. A and B are real constant nxn matrices, and u is a

linear feedback control given by

u -K(c,x), (2b)

n
where c is a nonzero vector in E ,and KC is a real number corresponding



to the feedback gain. We note that the Lorenz equation (1) can be re-

written in the form of (2) with

A - r -i J ; B 0 0 _-j ; c - (1 ,0,0 )T (3)

0 0 _b 0 1 0

and K - -1.

Although extensive studies have been made on bilinear control systems

[71-[10], most of the attention has been focused on optimal control, vari-

ous system properties such as controllability and observability, and reali-

zation theory. Very little work has been devoted to the self-oscillation

of bilinear systems with linear or nonlinear feedback controls. Here, we

explore the posslbility of existence of chaotic nonperiodic oscillations

in system (2). We begin by studying the stability of the equilibrium

states of (2), and obtaining some estimates for the solutions. Then, the

existence or nonexistence of chaotic oscillations is explored.

II. STABILITY OF EQUILIBRIUM

Assuming that A is nonsingular, the equilibrium set E of system (2)

consists of all fixed points of the mapping H defined by

H(x) - K <c,x) A-1 Bx. (4)

Obviously, the zero vector belongs to E. Let xe be a nonzero vector in

E. Then,

Ixell " IKI 'lc.,x> llAl-Bxll . IKllIcillI A_lBIIIxe I. (5)

Hence, any nonzero equilibrium state must lie outside or on the sphere

with radius p - (IKIlcIIIA-1BII)l- . Also, since H is an even operator

2



(i.e. H(-x) - H(x) for all xeEn), hence for any nonzero x E E, -x e E,

Now, consider the equation

x - H(x) (6)

for determining the equilibrium states. Since K(c,x) is a real number,

any nonzero solution x of (6) must be an eigenvector of A- IB correspond-e

ing to some nonzero real eigenvalue. Moreover, (c,x) # 0. Hence, any

nonzero equilibrium state xe must belong to n(A B) nl{xeEn: (c,x> # 0},

where n(A- B) denotes the null space of A- B. Let vI be an eigenvector

of A-1 B associated with the nonzero real eigenvalue Xi .  Then, its cor-

responding equilibrium state xe has the form avi, where the scalar a can

be determined by substituting avi into (6), i.e.

av, W K(clv i) A B(avi) = AiKc 2 <c,vi>vi

or

C l/(XiK (c,vi>), (7)

provided that K (c,vi># 0.

Evidently, if A B has n distinct nonzero real eigenvalues Ai with

corresponding eigenvectors vi, then the equilibrium set E is given by

E= {0} U {vi/( iK (c,vi)): K(c,vi) 0 0, iul,...,n} . (8)

Since {v ,i-l,...,n} is linearly independent and c 0 0, there exists at

least one i, say i-k, such that <cvk> 0 0. Thus, for any nonzero K, E

has at least two and at most (n+l) distinct points. In the case where

A-I B is a simple linear transformation with repeated real eigenvalues,

say Xi - X with eigenvectors vi, iEIQ{l,...,n}. Then, for K # 0 and

c Espan{vii l}lJ, E has an Infinite number of equilibrium points,

since any nontrivial linear combination v of such v i's is again an eigen-

3
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vector of A- IB with (c,v> 0 0.

To study the stability of an isolated equilibrium state xe, we con-

sider the following linearized system about xe

d6x/dt - Jf(Xe)6X ,  (9)

where Jf(x e ) is the Jacobian matrix of f(x) - Ax - K(c,x> Bx at xe given

by

Jf(xe) - A - KB{<c,Xe> I + XecT I . (10)

Obviously, the stability of the origin is determined only by the eigen-

values of A. At a nonzero equilibrium state xe - v i/(XiK (c,vi)), we

have A-I Bx - ixe or Bxe - Avi/(K <c,vi)). Thus, Jf(x e ) can be re-

written as

Jf~xe )  _1 T -1

Jf(xe A {I - <c,vi) vic } - B (11)

which is independent of the feedback gain K. This is evident from the
A

fact that for K#O, we may introduce the scaling xx/K. Thus,(2) is equi-

valent to the system

d /dt - A2 - <c,^>BX. (2')

III. ESTIMATES FOR SOLUTIONS;INVARIANT SETS

First, we derive a few elementary estimates for the solutions of (2)

under various assumptions on A and B.

Proposition 1: Let pi and X denote the eigenvalues of (A + A T) and

(B + BT ) respectively, and - max{i}, I 1. Assume that

i j
v - IKIIclX > 0. Then, a solution of (2) starting with x0 at t - 0

satisfies one of the following estimates:
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(M) for P-0:

Hx(t)ll 1 'I<111(1 - vlx0 It/2) - ' for all te[0,2(x Ov)- 1[;

A
(ii) for P>0:

Ix(t) 1 II [11 ( + xo)ep(i*t/2) -vIx 0 '

for all t E[O,tl[, where

tiM2U.Zn[l +. U(i 01b

(iii) for A1.<0 and Ixii ( i~i/v, IIx(t)ll 4 I% 11 for all trO. Moreover,

1x(t) I 1 0 as t--.

Proof: Let V(t) - II x(t)l .  By direct computation

dV/dt - <x, (A + AT)x> - K(c,jc><x, (B + B T)x>

T4V + IKIlclllxIIl<x,(C + B )x> < (P + vV 2 )V - h(V) (12)

with V(O) - IxOill

For .>0, h is a strictly monotone increasing function of V.

Consequently, V(t) - IIx(t)1I2 .< w(t), where w is the solution of

dw/dt - (P +vw 2 )w, w(O) - 11x11 • (13)

A
Solving the above equation for each case with 11-0 or 11>0 leads directly to

A% 2
the estimates (i) and (ii). When )<0, dV/dt< 0 for 0 <V <(IpI/v) . Re-

sult (ii) follows. 1

In the special case where B is skew-symmetric (i.e. B--B T), we have

the exponential estimate:

IX(t)II 4 Ixolep(t/2) for all tA, (14)

which implies that no solution has finite escape time. Finally, when both

A and B are skew-symmetric, Ix(t)I-1X 0 for all t or the solution remains
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on the sphere with radius lIxi at all time.

Now, we give lower bounds for the solutions.

Proposition 2: Let 11 denote the minimum eigenvalue of (A + AT) and

IXI,v be as defined in Proposition 1. Then the solution of (2) starting

from x at t-0 satisfies one of the following lower bounds:

i) for P=O,

IIx(t)II > 1X011/(i + VjX0 t/2) for all t>O; (15)

(ii) for $0,

Ix(t)i > M x ll/ ( -VIiXo )exp(-Wt/2) + vix o11 for all t;O. (16)

Proof: Let V(t) - Ilx(t)ll Then,

dV/dt >V - K<c,x><x,(B + B)x -VV 2 )V (17)

with V(O) - Ix Oil2. Consequently, V(t) - llx(t) 2 > w(t), where w is the

solution of

dw/dt - (P - vwz)w, w(O) - IIX0 i2 . (18)

Solving (16) leads to estimates (15) and (16).Il

we observe that for >0 and <0, the lower bound (16) tends to V/v

and zero respectively as t-. Also, the lower bound (15) tends to zero

as t-,

Now, we consider the existence of linear subspaces in En which are

invariant sets of the system.

Proposition 3: Let A represent a simple linear transformation or En

with distinct real eigenvalues Xi and their corresponding eigenvectors vi,

i-l,...,n. Let JC{l,...,n} denote the index set such that {X i:iGJ} re-

presents all the uncontrollable modes of (A,B) and all the uncbservable

modes of (A,cT). Then, span{^i;iEJ } is an invariant set of (2).

6
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Proof: Let T = [7 !---!n. Since A is simple, T-1exists and T-IAT =

A = diag[lA,..., n]. Let x = Tz. Then, (2) is transformed into the

following form:

dz/dt - Az - K<c,Tz> T- BTz. (19)

-1
If X is an uncontrollable mode of (A,B), then the J-th row of T B must

T
be zero. Also, if j is an unobservable mode of (Ac ), then the J-th

column of c T must be zero. In either case, the equation corresponding to

the J-th mode reduces to dz /dt - X z Thus, the subspace spanned by

v isan invariant set of (2), and the desired result follows.II

For a general linear transformation A, we can introduce the usual

canonical decomposition of the state ipace of the linear system: dx/dt =

Ax + Bu, y =<c,x> according to its controllable, uncontrollable, observa-

ble and unobservable modes. It is easy to see that the subspace cor-

responding to the uncontrollable and/or unobservable modes of the fore-

going linear system is an invariant set of (2).

IV. CHAOTIC OSCILLATIONS

The existence of chaotic oscillations or strange attractors depends

on the manner in which the stable and unstable manifolds intersect with

each other. Given a system such as (2), suppose we could find all the

bounded invariant manifolds of the system, then we could seek chaotic oscil-

lations by deleting those invariant manifolds which correspond to the

equilibrium set and periodic orbits. The

remaining ones, if they exist, may consist of solutions which are almost

periodic,peeudo-random or chaotic functions of time. The distinction

between the almost periodic solutions from the pseudo-random solutions

can be accomplished by investigating the asymptotic properties of their

correlation functions, provided that these solutions are known. The
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foregoing approach, although conceptually simple, represents a formidable

task from the analytical and/or computational standpoints. So far,cha-

otic oscillations in certain nonlinear systems were discovered through

numerical computation and bifurcation analysis. It is desirable to have

readily verifiable analytical conditions for determining the existence of

chaotic oscillations directly in terms of the right-hand-sides of the sys-

tem equations. Lacking such results at the present time, we shall re-

strict ourselves to the less ambitious tasks of establishing simple suffi-

cient conditions for the nonexistence of chaotic oscillations, and obtain-

ing bounds for the amplitudes of the chaotic oscillations when they exist.

Theorem 1: If A+AT is negative definite; B is skew-symmetric, and

c C- (A-IB), then system (2) has no periodic, almost periodic or chaotic

oscillations.

Proof: Since any nonzero equilibrium state of (2) must belong to n(A-I B)

n{xEEn:<c,x> 0 0}, hence the zero state is the only equilibrium state if c

n(A'-B). Since A+A is negative definite, <x,(A+AT)x>,x<P11i 2 for all xEE ,where

is the minimum eigenvalue of A+AT. Since B is skew-symmetric, x(t) has a decaying

exponential upper bound giver, by (14), implying that the origin is asymp-

totically stable in the large. Hence, no periodic,almost periodic or

chaotic oscillations can exist. 1

Assuming the existence of chaotic oscillations, we proceed to con-

struct an ellipsiodal domain Q in En which contains the invariant mani-

fold generated by the chaotic oscillations. This invariant manifold

does not contain any equilibrium states.

Consider a quadratic form in x given by

V(x) - <X-XQ(x-J)>, (20)

n
where x is a constant vector in E and Q is a positive definite syetric
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matrix. We shall make use of V to establish conditions under which 2 is

an attractor of (2) in the sense that every trajectory initiated from

the exterior of ; eventually enters S1 at some finite time t1 >0 and remains

in 4 for all t>tl,or tends to £ as t-. Clearly,such a S contains all the

trajectory points of the chaotic oscillations when they exist.

Theorem 2: Suppose that A is nonsingular and there exist a nonzero

vector ZE n and a positive definite symmetric matrix Q such that

(i) QB is skew-symmetric;

(ii) GA TQ+QA+KP is negative definite,where P - cxTQB+BTQxcT *

then there exists an ellipsoidal set £-{xEn :V(x) a) which is an at-

tractor of system (2) containing the manifold generated by the chaotic

oscillations when they exist.

Proof: Consider dV/dt given by

dV/dt - (x,(AT A)x> - K<c,x><x, (BT Q+QB)x> - 2<x,ATQ)

+ K<c,x>(<x,BTQ> + <(,QBX)). (21)

In view of condition (i), the second terIr, in the right-hand-side of

(21) vanishes. Rewriting the last term in (21) as K<x,Px>, (21) reduces

to

dV/dt - <x,Gx> - 2(x,ATQx>. (22)

From (ii), G - exists. We can rewrite (22) as

dV/dt - <x-xsG(x-x s)> - C, (23)

where xs - G 1 ATQZ and C - <XsGxs>. Since A is nonsingular, Q is posi-

tive definite and ZO 0, hence x A 0. Evidently, at any point extericrs

to the ellipsoidal set S ix1 En: -<x-XsG(x-xs)>41C1} , dV/dt < 0.

Also, since Q is bounded, there exists a real number a such that the ellip-

soidal set 0 {x EEE: V(x) < a} contains -0. Consequently, we have dV/dt

<0 along any trajectory exterior to S1, which implies that 0 is an attractor

of (2).11

9
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Remarks:

(R-i) Condition (i) requires the existence ,f a positive definite

symmetric matrix Q such that

BTQ + QB =0 . (24)

Rewriting (24) in the usual form of a linear equation Sq - 0 with

T T T T TS = B 01 + I OB and q - (q,.,q n) , where qi is the i-th column of

Q and 0 denotes the Kronecker product, we see that for the existence of

a nonzero q or Q satisfying (24), S must be singular. Since the eigen-

values of S have the form Xi + Xj, where Xi and X. are eigenvalues of B,

there must exist X i and X such that Xi + Xj . 0. This is possible if

and only if at least one of the following conditions holds: (i) B is

singular; (ii) B has real eigenvalues symmetric about the origin, and

Cil) B has one or more complex conjugate pairs of pure imaginary eigen-

values. For the special case where B is skew-symmetric, all its eigen-

values lie on the imaginary axis. Hence (24) has nontrivial solutions

Q. The requirement that Q be positive definite imposes further restric-

tions on B. Results for a special form of B were given in [11] and [12].

(R-2) Condition (ii) requires the negative definiteness of G. We

note that if B is singular, then for all xE n(QB) (the null space of QB),

<x,Px> - 0 regardless of the choice of x. Therefore, in this case, a

necessary condition for G to be negative definite is that T (A TQ + QA)

be negative definite, where the matrix 11 represents the projection onto

n(QB).

(R-3) Given a pair (p',Q) satisfying conditions (i) and (ii) of

Theorem 1, the smallest ellipsoidal set 0 containing 0 can be found by

solving the following standard constrained optimization problem: Maximize

10



V(x) = <x-;,Q(x-^)> over the ellipsoid a-A XEe:<XxG(x-xs)> - C1.

Although this problem can be solved exactly, it is useful to construct an

ellipsoidal set 0' (not necessarily the smallest one) which contains £.

Let w - Q (x-x) so that V= 11IIwl and 12 -{weE.-(<W-Q2(Xs-X) , Q 3GQ- 2 (w-

Q2 (x s-)> 4 (cI}. Since

I 1 1 1 1HIwQ(s- <. -<-Q x-) ,Q-IGQ-T(w-Qj(x s-x))> < I C , (25)

where y is the minimum eigenvalue of the positive definite symmetric matrix

-Q- GQ-2, we have

1 .1 1

Iwil - IQ2x( -1)i lw-Q( ((S){t. 1 0c /y)7 (26)

or

wlvii (Ic/Y) T + 11Q7(x-)I - v'. (27)

Thus, 6he ellipsoidal set

n{x C <x-,,Q(x-x)> < a1} (28)

contains 2.

An alternate approach is to find a pair (7,Q) satisfying conditions

(i) and (ii) such that the ellipsoidal set containing 2 has the smallest

volume. This problem is not so straightforward.

(R-4) If system (2) has invariant sets of the form span{i;i }J

as described in Proposition 3, then their intersection with the invariant

manifold generated by the chaotic oscillations must be empty. Moreover,

the invariant sets span{i} associated with the positive eigenvalues 7i,

iei can have at most the zero vector in common with the ellipsoidal set

fl in Theorem 2.
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V. EXAMPLES

First,we consider an equivalent version of the Lorenz equation in the

form of (2) with variable feedback gain K, and A,B,c given by (3).

Assuming that bO and o(l-r)#O, A is invertible. The eigenvalues of A-I B

given by

A-B 0 0 (1-r) - ] (29)

10 -b- 1 0

are

0, X2 3 = +(b(1-r)] 2 (30)

Thus, the equilibrium set E consists of the zero state and

v2/(X2K<c,v,>) - K-1 ((rV-n,l-r)
T (31)

v 3/(X 3K<c,v,>) " -  (-(r-1),-V(r-l),l-r)T (
.1

where v2 and v3 are eigenvectorsof A B corresponding to X2 and X3 re-

spectively. Also, the eigenvalues of A are given by

X 1 =[-(1.a)+A
2]/2, X2_ -E(+)-cJI/2, A 3--b (32)

and their corresponding eigenvectors vi are

I al)- + 2 a/ ( -l-A ) 0

T - [ . 13] 1 1 0 (33)

0 0 1

where A-(l+o)2-40(l-r). If a and A are nonzero, then T- exists and

T' B 0 0 4GrA" 2 [ al+A2 ]-
± -1

0 0 04c-rA (34)2 (O 1A

1

CTT - [2a/(o-1+A ),2o/(a-1-Az) ,].

! 12



Evidently, (A,B) is completely controllable and X3 is the only unobserva-
ble mode of (A,cT From Proposition 3, span{ 3 } is an invariant set of

the system. Since B is skew-symmetric, the solutions have an exponential

upper bound (14) with V- max{-2b,-(1+c)*{(1 (a+r)z 1.

Now, we apply Theorem 2 to construct an ellipsoidal set Q which con-

tains the orbits of the chaotic oscillations when they exist. To simplify

the computations, we make use of a function V of the form (20) with a di-

agonal matrix Q - diag[qjq 2z2 qIj]. To satisfy condition (i) of Theorem

2, we must have q2 2.q,3 . Let I - (ZI, 2,X3) . Then, the matrix G in

condition (ii) of Theorem 2 is given explicitly by

[-20ql aq1 I+(r4+LZ) q3 -Kq

G - cq1 1+(r+KZ 3)q,, -2q 33  0 (35)

1-Kq.3 x' 0 -2bq 3 3

We must choose q11,q33 >0 and x such that G is negative defirLite. For ex-

pedience, we set

x- 0, x3  -(oql+ rq33)/(Kq33) (36)

so that G reduces to a diagonal matrix. For c,b>O, G is negative definite

for any positive q,, and q33 . Now, we have dV/dt< 0 at any point exterior to

the ellipsoid,lSW - {xe-E -<x-xsG(x-xs)> 4 ICI), where

x G A Qx - (x,/2,-cq,,x~/(2q,3 ),-(Cq 11+rq33 )/(2Kq3 ))T , 7

s (373
C - <xs,Gx5> - -(l/2q3 cq 1 ( 3 +q 1 +(q 1 +q 3  K1

The remaining task is to construct an ellipsoidal set

S-{xeE :<x- ,Q(x-x)> - q1 1 (xI I) 2+q 3 x+q 3 3 [x3 +(cqii+rqg3 )/(Kqss)J 2zQ}

(38)

which contains 1. Such a set is given by SW in (28) with

13
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O Y- ( )cI/' + 1lQ(x s-4 11)- LIC /(2 min(l,b,o}P]

(1/2){q (1 + ;'qq) + (Gq11 + rq 1 3 ) 2 /(K 2 q3 3 )}, (39)

where C is defined in (37). We wish to choose q11 ,q3 3 and _' such that

the volume of Q'

4T 3 41 -( a q11/ql)zq 3 3 - q/+ q2 l xq 3 3

+ r2 q33 (40)
K q33

is minimized. Since for any fixed q,,,q 33 >O, V0, is a strictly monotone

increasing function of x- for 2>40, hence we set x1-0 in (40). The re-

sulting VQ, can be rewritten in terms of the ratio q-q33/q1l

v (413)[Y7/(2y) + J/2]IKI- q 2(a+rq)', (41)

which has a minimum point in [0,oo[ given by q = 5a/r.

This specifies a 0'-{xEE :x,+2x2+[X +6r/(SK)]24(9/5) (rK - a ) (/7) + 1)21

which contains the manifold generated by the chaotic oscillations.

It is known [1] that for K--l, o-lO and b-8/3, chaotic oscillations

or a strange attractor exist for r >24.06. Since for K#O, systems (2)

and (2') are equivalent, we conclude that chaotic oscillations exist for

the foregoing values of a,b and r and any K#O. The peak magnitudes 1xi

of the oscillations or the size of the strange attractor are inversely

proportional to IK.

Figure I shows a typical buildup of the chaotic oscillations in the

time domain for the foregoing values of ab,K-i and r-30. The projections

of the trajectory onto the (x1,x 2 ) and (x 3 ,x 2 ) planes are shown in Fig.2.

For these parameter values, V,, given by (41) has a minimum point q5/3
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which gives Q' - {xE 3 : x2/(61.185)2 + x2/(47.394) 2 + (x3+36)
2/(47.394) 2

4 1} containing the strange attractor. The ellipses corresponding to the

boundary of S' in its principal-axes planes are also shown in Fig.2. It

should be mentioned that nonellipsoidal bounds for the strange attractor

of the Lorenz equation have been obtained using certain invariants of the

equation with -0 [13],[141.

Besides the Lorenz equation, there are a number of other nonlinear

systems which are known to exhibit chaotic oscillations and can be written

in the form of (2). An example is given by Rkssler [151 where A,B and c

are

A =l [0 , B -0 0 0] , c ( )(42)
b 0 -r 0 0 1

and K-1. Here, A is nonsingular if ab~r. The equilibrium set E con-

sists of the origin and the point (-ab+r,b-r 1,rC- 1-b) T . It can be

readily verified that (A,B) is completely controllable and if acr, (A,c )

is completely observable. Also,there does not exist nontrivial linear

invariant subspaces if aor.

It is known that this system has chaotic oscillations for b-0.4,

r-4.5 and 0.36 ( a < 0.5. Again, Using Theorem 2, we can

construct an ellipsoidal set 0 which contains the chaotic orbits. We omit

the details here. A typical solution corresponding to chaotic oscillations

is shown in Figs. 3 and 4.

VI. CONCLUDING REMARKS

The existence of chaotic oscillations in deterministic nonlinear

dynamical systema is an intriguing phenomenon which is inherent in a number

of mathematical models for real-world systems. For models of population
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dynamics and economic systems, chaotic oscillations imply the absence ot

predictable "cycles". In fluid models, such oscillations could provide

a mathematical explanation of various turbulence phenomena. Chaotic oscil-

lations could also arise in bilinear systems with linear feedback controls

as demonstrated here. They cannot be predicted or analyzed using conven-

tional methods. Although at the present time, there are a number of mathe-

matical results pertaining to various strange attractors in abstract dy-

namical systems [16],[17]. However, they are not readily applicable for

determining the existence of chaotic oscillations even for the relatively

simple class of nonlinear systems considered here. The establishment of

sufficient conditions for the existence of chaotic oscillations or strange

attractors is a difficult challenging problem in nonlinear system theory.

Here, we have considered only continuous-time systems. Similar re-

sults can be obtained for discrete-time bilinear systems with linear feed-

back controls of the form:

x(k+l) - Ax(k) + u(k)Bx(k),
(43)

u(k) - -K<c,x(k)>.

It is known that chaotic oscillations can exist in such systems also. In

fact, the scalar equation: x(k+l) - ax(k) - ax 2(k) has chaotic oscillations

for 3.57<a<4.0 [18]'

A problem of practical interest is the extension of nonturbulent re-

gime in a fluid system to a broader range of Reynold's numbers. If fluid

turbulence is indeed explainable by the theory of chaotic oscillations,

then it may be possible to achieve the desired result by introducing ap-

propriate feedback controls into the system. Finally, it is of interest

to synthesize nonlinear systems to generate chaotic oscillations or pseudo-

random functions having certain desired properties, This idea has al-
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ready been utilized in a number of pseudo-random number algorithms in

digital computation.
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FIGURE CAPTIONS

Figure 1: Time domain solution of Lorenz equation with Kfl,a-l0,b-8/3 and

r-30; initial conditions: x (0)-x 2(0)-50,x 3 (0)=.

Figure 2: Projections of the trajectory of Lorenz equation (with parameters

given in Fig.l) in the state space onto the (x2,x1 ) and (x2,x,)

planes, and the ellipses corresponding co the boundary of 41' in

its principal-axes planes indicated by dashed curves.

Figure 3: Time domain solution of eq. (2) (with matrices (42)) for b=0..,

r-4.5,0=4.0 and K--l; initial conditions: x1(0)=x3 (0)-O, x2(O)-

4.0.

Figure 4: Projections of the trajectory of eq.(2) (with matrices (42) and

parameters given in Fig.3) in the state space onto the (x2,x3)

and (x2,x1 ) planes.
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